Skip to main content
Log in

Application of XGBoost and kernel principal component analysis to forecast oxygen content in ESR

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A model combining kernel principal component analysis (KPCA) and Xtreme Gradient Boosting (XGBoost) was introduced for forecasting the final oxygen content of electroslag remelting. KPCA was employed to reduce the dimensionality of the factors influencing the endpoint oxygen content and to eliminate any existing correlations among these factors. The resulting principal components were then utilized as input variables for the XGBoost prediction model. The KPCA-XGBoost model was trained and proven using data obtained from companies. The model structure was adapted, and hyperparameters were optimized using grid search cross-validation. The model performance of the KPCA-XGBoost model is compared with five machine learning models, including the support vector regression model. The findings demonstrated that the KPCA-XGBoost model exhibited the highest level of prediction accuracy, indicating that the incorporation of KPCA significantly enhanced the regression prediction performance of the model. The accuracy of the KPCA-XGBoost model was 82.4%, 97.1%, and 100% at errors of ± 1.5 × 10−6, ± 2.0 × 10−6, and ± 3 × 10−6 for oxygen content, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Liu, J. Li, H. Wang, C. Shi, Steel Res. Int. 90 (2019) 1900185.

    Article  Google Scholar 

  2. H. Cao, Z. Jiang, Y. Dong, F. Liu, Z. Hou, K. Yao, J. Yu, ISIJ Int. 60 (2020) 247–257.

    Article  Google Scholar 

  3. Y. Qi, J. Li, C. Shi, ISIJ Int. 58 (2018) 2079–2087.

    Article  Google Scholar 

  4. Y. Chen, S. Wang, J. Xiong, G. Wu, J. Gao, Y. Wu, G. Ma, H.H. Wu, X. Mao, J. Mater. Sci. Technol. 132 (2023) 213–222.

    Article  Google Scholar 

  5. D. Zhu, K. Pan, H.H. Wu, Y. Wu, J. Xiong, X.S. Yang, Y. Ren, H. Yu, S. Wei, T. Lookman, J. Mater. Res. Technol. 26 (2023) 8836–8845.

    Article  Google Scholar 

  6. D.X. Zhu, K.M. Pan, Y. Wu, X.Y. Zhou, X.Y. Li, Y.P. Ren, S.R. Shi, H. Yu, S.Z. Wei, H.H. Wu, X.S. Yang, Rare Met. 42 (2023) 2396–2405.

    Article  Google Scholar 

  7. G. Pan, F. Wang, C. Shang, H. Wu, G. Wu, J. Gao, S. Wang, Z. Gao, X. Zhou, X. Mao, Int. J. Miner. Metall. Mater. 30 (2023) 1003–1024.

    Article  Google Scholar 

  8. L.Z. Che, S.H. Zhang, W.H. Tian, Y. Li, J. Manuf. Process. 101 (2023) 904–915.

    Article  Google Scholar 

  9. S.H. Zhang, L. Deng, Q.Y. Zhang, Q.H. Li, J.X. Hou, Int. J. Mech. Sci. 159 (2019) 373–381.

    Article  Google Scholar 

  10. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre, H. Poisson, Metall. Mater. Trans. B 47 (2016) 2607–2622.

    Article  Google Scholar 

  11. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, H. Ren, Steel Res. Int. 83 (2012) 472–486.

    Article  Google Scholar 

  12. Y. Liu, X. Wang, G. Li, X. Huang, Q. Wang, B. Li, J. Mater. Res. Technol. 9 (2020) 1619–1630.

    Article  Google Scholar 

  13. R.S.E. Schneider, M. Molnar, G. Klösch, C. Schüller, J. Fasching, Steel Res. Int. 91 (2020) 2000241.

    Article  Google Scholar 

  14. Y.X. Liu, Y.W. Dong, Z.H. Jiang, Y.S. Li, W. Zha, Y.X. Du, S.Y. Du, J. Iron Steel Res. Int. 30 (2023) 887–896.

    Article  Google Scholar 

  15. X. Huang, B. Li, Z. Liu, Int. J. Heat Mass Transf. 120 (2018) 458–470.

    Article  Google Scholar 

  16. H. Duan, J. Wei, L. Qi, X. Wang, Y. Liu, M. Yao, Steel Res. Int. 92 (2021) 2100168.

    Article  Google Scholar 

  17. X. Li, R. Jia, R. Zhang, S. Yang, G. Chen, Reliab. Eng. Syst. Saf. 219 (2022) 108231.

    Article  Google Scholar 

  18. I. Elaissi, I. Jaffel, O. Taouali, H. Messaoud, ISA Trans. 52 (2013) 96–104.

    Article  Google Scholar 

  19. B. Schölkopf, A. Smola, K.R. Müller, Neural Comput. 10 (1998) 1299–1319.

    Article  Google Scholar 

  20. B. O’Connor, Behav. Res. METHODS Instrum. Comput. 32 (2000) 396–402.

    Article  Google Scholar 

  21. C. Bentéjac, A. Csörgő, G. Martínez-Muñoz, Artif. Intell. Rev. 54 (2021) 1937–1967.

    Article  Google Scholar 

  22. R.P. Sheridan, W.M. Wang, A. Liaw, J. Ma, E.M. Gifford, J. Chem. Inf. Model. 56 (2016) 2353–2360.

    Article  Google Scholar 

  23. P. Montero-Manso, G. Athanasopoulos, R.J. Hyndman, T.S. Talagala, Int. J. Forecast. 36 (2020) 86–92.

    Article  Google Scholar 

  24. C. Wang, C. Deng, S. Wang, Pattern Recognit. Lett. 136 (2020) 190–197.

    Article  Google Scholar 

  25. J. Friedman, T. Hastie, R. Tibshirani, J. Stat. Soft. 33 (2010) 1–22.

    Article  Google Scholar 

  26. J.F. Henriques, R. Caseiro, P. Martins, J. Batista, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015) 583–596.

    Article  Google Scholar 

  27. A.J. Smola, B. Schölkopf, Stat. Comput. 14 (2004) 199–222.

    Article  MathSciNet  Google Scholar 

  28. J.H. Friedman, Comput. Stat. Data Anal. 38 (2002) 367–378.

    Article  Google Scholar 

  29. L.Z. Chang, X.F. Shi, J.Q. Cong, Ironmak. Steelmak. 41 (2014) 182–186.

    Article  Google Scholar 

  30. W. Feng, Q. Zhu, J. Zhuang, S. Yu, Clust. Comput. J. Netw. Softw. Tools Appl. 22 (2019) S7401–S7412.

    Google Scholar 

  31. R.X. Liu, J. Kuang, Q. Gong, X.L. Hou, Comput. Meth. Programs Biomed. 71 (2003) 141–147.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support by National Natural Science Foundation of China (Grant Nos. 52174303, and 51874084), Fundamental Research Funds for the Central Universities (Grant No. 2125026), Program of Introducing Talents of Discipline to Universities (Grant No. B21001) and the 111 Project (Grant No. B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-wu Dong.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yx., Dong, Yw., Jiang, Zh. et al. Application of XGBoost and kernel principal component analysis to forecast oxygen content in ESR. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01205-6

Keywords

Navigation