Skip to main content
Log in

Effect of blade tilt angle on fluid flow characteristics in spray-blowing agitation composite process: a simulation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Aiming at the paddle tilt angle of the spray-blowing agitation composite process, the four-blade stirring and blowing composite desulfurization agitator was chosen as the research object, and the computational fluid dynamics numerical simulation was used to investigate the changes in flow field velocity, turbulent kinetic energy magnitude, and distribution caused by the blade tilt angle. Furthermore, the impact of blade tilt angle on the flow fragmentation behavior of individual bubbles and the coalescence process of multiple bubbles at different positions was studied. Under the same stirring and blowing process parameters, with the increase in the blade tilt angle of the agitator, the velocity of the flow field and the average turbulent kinetic energy inside the agitator decreased, and the bubble fragmentation speed decreased while the merging speed accelerated. The turbulent kinetic energy at the agitator bottom was greater when the blade tilt angle was 3.2° compared to when it was 13.2°, while the turbulent kinetic energy at the agitator upper part was relatively smaller. The results for single bubbles represented the state and trajectory of the bubble fragmentation process, and the results for multiple bubbles illustrated the state and trajectory of the bubble aggregation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F.X. Li, C.H. Yu, Z.H. Zhou, Steelmaking 16 (2000) No. 1, 47–50.

    Google Scholar 

  2. T. Lan, Z.Q. Li, Metall. Series. (2013) No. 4, 19–21.

  3. B. Zhang, Y. Xie, Ind. Heat. 50 (2021) No. 1, 21–23.

    Google Scholar 

  4. C.L. Yin, C.Y. Tian, L.M. Yang, Steelmaking 35 (2019) No. 4, 8–11+70.

    Google Scholar 

  5. J. Szekely, H.J. Wang, K.M. Kiser, Metall. Trans. B 7 (1976) 287–295.

    Article  Google Scholar 

  6. Y. Sahai, R.I.L. Guthrie, Metall. Trans. B 13 (1982) 193–202.

    Article  Google Scholar 

  7. K. Krishnapisharody, G.A. Irons, Metall. Mater. Trans. B 38 (2007) 367–375.

    Article  Google Scholar 

  8. K. Krishnapisharody, G.A. Irons, ISIJ Int. 50 (2010) 1413–1421.

    Article  Google Scholar 

  9. X.G. Bi, R. Yue, J.D. Zhou, F. Yang, J. Wuhan Univ. Sci. Technol. 35 (2012) 321–324.

    Google Scholar 

  10. Y. Zhao, W. Chen, S. Cheng, L. Zhang, Int. J. Miner. Metall. Mater. 29 (2022) 758–766.

    Article  Google Scholar 

  11. Q.L. Jiang, B.B. Dan, Q.Y. Niu, C.Y. Gong, D.G. Ouyang, L.P. Du, Industrial Furnace 44 (2022) No. 1, 1–6.

    Google Scholar 

  12. S.Y. Jia, R.Z. Wang, D.G. Ouyang, S.W. Shang, Q. Wang, Z. He, Iron and Steel 58 (2023) No. 3, 158–166.

    Google Scholar 

  13. S.Y. Jia, Q. Wang, Z. He, D.G. Ouyang, S.H. Zhu, W. Sun, J Iron Steel Res. 33 (2021) No. 11, 1134–1143.

    Google Scholar 

  14. P. He, P. Tang, X. Qi, Z. Fu, G.F. Wen, Steelmaking 38 (2022) No. 5, 16–22+30.

    Google Scholar 

  15. K. Fu, Y.M. Xiao, W.H. Huang, Hunan Nonferrous Metals 37 (2021) No. 3, 37–39+51.

    Google Scholar 

  16. S. Pin, T.A. Zhang, Y. Liu, H.L. Zhao, J.C. He, J. Iron Steel Res. Int. 18 (2011) 129–134.

    Google Scholar 

  17. Y. Liu, M. Sano, Q. Wang, T.A. Zhang, J.C. He, J. Northeast. Univ. 27 (2006) No. S2, 96–99.

    Google Scholar 

  18. Y.Y. Sheng, G.A. Irons, Metall. Trans. B 24 (1993) 695–705.

    Article  Google Scholar 

  19. D. Mazumdar, R.I.L. Guthrie, ISIJ Int. 34 (1994) 384–392.

    Article  Google Scholar 

  20. Y.Y. Sheng, G.A. Irons, Metall. Mater. Trans. B 26 (1995) 625–635.

    Article  Google Scholar 

  21. D. Guo, G.A. Irons, Metall. Mater. Trans. B 31 (2000) 1457–1464.

    Article  Google Scholar 

  22. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, J. Iron Steel Res. Int. 27 (2020) 1137–1144.

    Article  Google Scholar 

  23. M.Z. Xie, H.L. Song, H. Liu, D.Q. Wang, J. Therm. Sci. Technol. (2007) No. 2, 146–151.

  24. C.W. Stewart, Int. J. Multiph. Flow 21 (1995) 1037–1046.

    Article  Google Scholar 

  25. A. Smolianski, H. Haario, P. Luukka, Appl. Math. Model. 29 (2005) 615–632.

    Article  Google Scholar 

  26. F.X. Yan, G.J. Wang, Y. Wang, L.A. Jin, Chem. Ind. Eng. 30 (2013) No. 6, 49–55.

    Google Scholar 

  27. C. Lv, X.X. Chen, Z.X. Ji, H.L. Zhao, T. Yang, L.H. Yu, J. Iron Steel Res. Int. 30 (2023) 1117–1127.

    Article  Google Scholar 

  28. C. Lv, X.X. Chen, H.W. Zhang, H.L. Zhao, L.H. Yu, W.M. Guo, J. Iron Steel Res. Int. 30 (2023) 2403–2415.

    Article  Google Scholar 

  29. J.H. Ji, Research on characteristics of fluid flow based on hot metal pretreatment desulphurization, Northeastern University, Shenyang, China, 2017.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51904069), the Fundamental Research Funds for the Central Universities (No. N2223026), the Development Fund of State Key Laboratory for Clean Utilization of Complex Nonferrous Metal Resources (No. CNMRCUKF2302), and the Scientific Research Fund Project of Northeastern University at Qinhuangdao (No. XNY201808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Lv or Hong-liang Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Zhang, Hw., Yang, T. et al. Effect of blade tilt angle on fluid flow characteristics in spray-blowing agitation composite process: a simulation. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01204-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01204-7

Keywords

Navigation