Skip to main content
Log in

Low-temperature deNOx performance and mechanism: a novel FeVO4/CeO2 catalyst for iron ore sintering flue gas

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Developing deNOx catalysts with lower activity temperatures range significantly reduces NH3 selective catalytic reduction (SCR) operating costs for low-temperature industrial flue gases. Herein, a novel FeVO4/CeO2 catalyst with great low-temperature NH3-SCR and nitrogen selectivity was synthesized using a dipping method. Characterization techniques such as X-ray diffraction, Raman spectroscopy, specific surface and porosity analysis, H2 temperature-programmed reduction, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy, and the in situ diffused reflectance infrared Fourier transform spectroscopy were used to investigate the catalytic mechanism. An appropriate addition for FeVO4 in the catalyst was 5 wt.% from the results, and the active substance content reached the maximum dispersal capacity of the carrier. The NOx conversion exceeded 90%, and the nitrogen selectivity was more than 98% over this catalyst at 200–350 °C. The activity was kept at 88% after 7.5 h of reaction at 200 °C for 7.5 h in 35 mg m−3 SO2 gas. The remarkable deNOx activity, nitrogen selectivity, and sulphur resistance performances are attributed to the low redox temperature, the abundance of medium-strong acid and strong acid sites, the sufficient adsorbed oxygen, and the superior Fe2+ content on the surface. The Langmuir–Hinshelwood mechanism was observed on the FeVO4/CeO2 catalyst in the NH3 selective catalytic reduction of NOx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.P. Wang, S. Sun, S. Ren, Z.C. Chen, M.M. Wang, X.D. Li, L. Wang, Catal. Today 418 (2023) 114046.

    Article  Google Scholar 

  2. T. Chen, S. Ren, L. Chen, Z.C. Chen, X.D. Li, M.M. Wang, J. Yang, Catal. Today 420 (2023) 114175.

    Article  Google Scholar 

  3. H.L. Wu, L.M. Teng, W.Z. Liu, H.D. Zhang, J.B. Huang, Q.C. Liu, Fuel 331 (2023) 125833.

    Article  Google Scholar 

  4. Q.J. Zhang, Y.F. Wu, H.R. Yuan, Resour. Conserv. Recycl. 161 (2020) 104983.

    Article  Google Scholar 

  5. Y. Liang, W.Z. Liu, H.L. Wu, Q.C. Liu, L. Yao, Fuel 355 (2024) 129478.

    Article  Google Scholar 

  6. L. Ding, Y.F. Wang, L.X. Qian, P.Y. Qi, M. Xie, H.M. Long, Fuel 338 (2023) 127268.

    Article  Google Scholar 

  7. Z.H. Su, S. Ren, T.S. Zhang, J. Yang, Y.H. Zhou, L. Yao, J. Iron Steel Res. Int. 28 (2021) 133–139.

    Article  Google Scholar 

  8. H.L. Wu, W.Z. Liu, X.Y. Jiang, Y. Liang, C. Yang, J. Cao, Q.C. Liu, Inorg. Chem. 62 (2023) 9971–9982.

    Article  Google Scholar 

  9. M. Casanova, K. Schermanz, J. Llorca, A. Trovarelli, Catal. Today 184 (2012) 227–236.

    Article  Google Scholar 

  10. G.X. Wu, J. Li, Z.T. Fang, L. Lan, R. Wang, M.C. Gong, Y.Q. Chen, Catal. Commun. 64 (2015) 75–79.

    Article  Google Scholar 

  11. N. Zhu, W.P. Shan, Z.H. Lian, Y. Zhang, K. Liu, H. He, J. Hazard. Mater. 382 (2020) 120970.

    Article  Google Scholar 

  12. J. Kim, J.M. Won, S.K. Jeong, K. Yu, K. Shin, S.M. Hwang, Appl. Surf. Sci. 601 (2022) 154290.

    Article  Google Scholar 

  13. A. Marberger, D. Ferri, M. Elsener, A. Sagar, C. Artner, K. Schermanz, O. Kröcher, Appl. Catal. B Environ. 218 (2017) 731–742.

    Article  Google Scholar 

  14. H. Xie, D.B. Shu, T.H. Chen, H.B. Liu, X.H. Zou, C. Wang, Z.Y. Han, D. Chen, Fuel 309 (2022) 122108.

    Article  Google Scholar 

  15. G.X. Wu, J. Li, Z.T. Fang, L. Lan, R. Wang, T. Lin, M.C. Gong, Y.Q. Chen, Chem. Eng. J. 271 (2015) 1–13.

    Article  Google Scholar 

  16. R.B. Jin, Y. Liu, Y. Wang, W.L. Cen, Z.B. Wu, H.Q. Wang, X.L. Weng, Appl. Catal. B Environ. 148–149 (2014) 582–588.

    Article  Google Scholar 

  17. B.L. Li, X.X. Wang, Y.Q. Wang, W.J. Wang, S.G. Zhou, S.H. Zhang, W. Li, S.J. Li, J. Environ. Chem. Eng. 10 (2022) 107588.

    Article  Google Scholar 

  18. H.L. Zhang, L. Ding, H.M. Long, J.X. Li, W. Tan, J.W. Ji, J.F. Sun, C.J. Tang, L. Dong, J. Rare Earths 38 (2020) 883–890.

    Article  Google Scholar 

  19. M.V. Bosco, M.A. Bañares, M.V. Martínez-Huerta, A.L. Bonivardi, S.E. Collins, J. Mol. Catal. A Chem. 408 (2015) 75–84.

    Article  Google Scholar 

  20. C. Routray, S. Pahi, S.K. Biswal, S.K. Sahoo, Chem. Phys. Impact 7 (2023) 100268.

    Article  Google Scholar 

  21. H. Xie, P. He, C. Chen, C. Yang, S. Chai, N. Wang, C. Ge, Catal. Lett. 153 (2023) 850–862.

    Article  Google Scholar 

  22. Y.N. Dong, P.L. Wang, X.Y. Liu, J. Deng, A.L. Chen, L.P. Han, D.S. Zhang, Chin. Chem. Lett. 35 (2024) 108635.

    Article  Google Scholar 

  23. H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang, J. Catal. 225 (2004) 267–277.

    Article  Google Scholar 

  24. D. Zhang, L. Zhang, L. Shi, C. Fang, H. Li, R. Gao, L. Huang, J. Zhang, Nanoscale 5 (2013) 1127–1136.

    Article  Google Scholar 

  25. L. Chen, X. Yao, J. Cao, F. Yang, C. Tang, L. Dong, Appl. Surf. Sci. 476 (2019) 283–292.

    Article  Google Scholar 

  26. H. Xue, X. Guo, T. Meng, D. Mao, Z. Ma, Surf. Interfaces 29 (2022) 101722.

    Article  Google Scholar 

  27. X. Wu, K. Ni, X. Yu, N. Zhao, J. Fuel Chem. Technol. 48 (2020) 179–188.

    Article  Google Scholar 

  28. J. Yang, S. Ren, Y.H. Zhou, Z.H. Su, L. Yao, J. Cao, L.J. Jiang, G. Hu, M. Kong, J. Yang, Q.C. Liu, Chem. Eng. J. 397 (2020) 125446.

    Article  Google Scholar 

  29. E.H. Gao, G.J. Sun, W. Zhang, M.T. Bernards, Y. He, H. Pan, Y. Shi, Chem. Eng. J. 380 (2020) 122397.

    Article  Google Scholar 

  30. Z.Y. Chen, X.M. Wu, K.W. Ni, H.Z. Shen, Z.W. Huang, Z.M. Zhou, G.H. Jing, Catal. Sci. Technol. 11 (2021) 1746–1757.

    Article  Google Scholar 

  31. E. Paparazzo, Mater. Res. Bull. 46 (2011) 323–326.

    Article  Google Scholar 

  32. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254 (2008) 2441–2449.

    Article  Google Scholar 

  33. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, J. Electron. Spectrosc. Relat. Phenom. 135 (2004) 167–175.

    Article  Google Scholar 

  34. L.P. Han, M. Gao, C. Feng, L.Y. Shi, D.S. Zhang, Environ. Sci. Technol. 53 (2019) 5946–5956.

    Article  Google Scholar 

  35. S.Z. Xie, L.L. Li, L.J. Jin, Y.H. Wu, H. Liu, Q.J. Qin, X.L. Wei, J.X. Liu, L.H. Dong, B. Li, Appl. Surf. Sci. 515 (2020) 146014.

    Article  Google Scholar 

  36. L.J. Liu, T. Liu, Y.J. Zhou, X.T. Zheng, S. Su, J.Y. Yu, J. Xiang, Appl. Surf. Sci. 638 (2023) 158003.

    Article  Google Scholar 

  37. M. Bendrich, A. Scheuer, R.E. Hayes, M. Votsmeier, Appl. Catal. B Environ. 222 (2018) 76–87.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52204332 and 52174290), the Outstanding Youth Fund of Anhui Province (2208085J19), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB450002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-xin Qian or Hong-ming Long.

Ethics declarations

Conflict of interest

Hong-ming Long is an editorial board memeber for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zhao, Hx., Cheng, K. et al. Low-temperature deNOx performance and mechanism: a novel FeVO4/CeO2 catalyst for iron ore sintering flue gas. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01203-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01203-8

Keywords

Navigation