Skip to main content
Log in

Effect of Ta content on high temperature oxidation and hot corrosion resistance of DZ411 superalloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to elucidate the mechanism of the effect of Ta content on the high temperature behaviour of the alloys, the high temperature oxidation and thermal corrosion experiments were carried out on the three alloys with different Ta contents (2.72, 3.10 and 4.00 wt.%). The results of high temperature oxidation and hot corrosion show that because Ta has a higher valence state than Al, it can reduce the indiffusion of O, and the rate at which Ta diffuses within the alloy matrix is relatively slow since it has a larger atomic radius. As a result, the diffusion of the Al element is inhibited as the Ta content increases. Therefore, adding Ta inhibits the formation of Al2O3 in the surface oxide and promotes the formation of Cr2O3. Thus, Ta promotes oxidised film growth on the sample surface, which inhibits the diffusion of S, O and other elements into the matrix. Additionally, Cr2O3 is not easy to dissolve in molten salt, which ultimately makes the alloy have high oxidation resistance and thermal corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Reed, C. Rae, Physical metallurgy of the nickel-based superalloys, 5th ed., Physical Metallurgy, Cambridge, UK, Elsevier, 2014.

    Book  Google Scholar 

  2. P. Peng, A. Zhang, S. Li, W. Zheng, L. Lu, Metall. Mater. Trans. A 52 (2021) 2691–2697.

    Article  Google Scholar 

  3. Y. Yuan, Y.F. Gu, Z.H. Zhong, T. Yokokawa, H. Harada, Mater. Sci. Eng. A 556 (2012) 595–600.

  4. M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.K. William Grips, Appl. Surf. Sci. 263 (2012) 597–607.

  5. Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, H.Y. Yu, J. Iron Steel Res. Int. 27 (2020) 1179–1189.

  6. P. Peng, J. Yue, A. Zhang, X. Zhang, Y. Xu, Scripta Mater. 189 (2020) 42–47.

  7. M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, 2nd ed., Material Technology, New York, USA, 2002.

  8. P. Peng, J. Yue, A. Zhang, X. Zhang, Y. Xu, J. Mater. Sci. Technol. 71 (2021) 169–176.

    Article  Google Scholar 

  9. Z.X. Shi, J.R. Li, S.Z. Liu, X.G. Wang, X.D. Yue, J. Iron Steel Res. Int. 20 (2013) No. 3, 74–78.

    Article  Google Scholar 

  10. C.M.F. Rae, R.C. Reed, Acta Mater. 49 (2001) 4113–4125.

  11. D.K. Gupta, R.A. Rapp, J. Electrochem. Soc. 127 (1980) 2194–2202.

  12. C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II: High temperature Materials for Aerospace and Industrial Power, John Wiley and Sons, New York, USA, 1987.

    Google Scholar 

  13. P. Peng, A. Zhang, J. Yue, S. Li, W. Zheng, L. Lu, J. Mater. Sci. Technol. 90 (2021) 236–242.

  14. K. Peters, D. Whittle, J. Stringer, Corros. Sci. 16 (1977) 791–804.

  15. W.S. Walston, J.C. Schaeffer, A new type of microstructural instability in superalloys-SRZ, Superalloys 1996, Warrendale, USA, 1996.

    Google Scholar 

  16. L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, Z. Li, Mater. Des. 61 (2014) 61–69.

  17. W. Yang, P. Qu, J. Sun, Q. Yue, H. Su, J. Zhang, L. Liu, Vacuum 181 (2020) 109682.

  18. J. Wu, X. Jiang, Y. Wang, J. Dong, L. Lou, Mater. Sci. Eng. A 806 (2021) 140829.

  19. S.W. Yang, Oxid. Met. 15 (1981) 375–397.

  20. P. Peng, L. Lu, Z. Liu, Y. Xu, X. Zhang, Z. Ma, H. Zhang, M. Guo, L. Liu, J. Alloy. Compd. 927 (2022) 167009.

  21. G.C. Fryburg, C.A. Stearns, F.J. Kohl, J. Electrochem. Soc. 124 (1977) 1147–1148.

  22. X. Lu, S. Tian, X. Yu, C. Wang, Rare Met. 30 (2011) 439–442.

  23. M. Moniruzzaman, Y. Murata, M. Morinaga, R. Hashizume, A. Yoshinari, Y. Fukui, ISIJ Int. 43 (2003) 1244–1252.

  24. J.S. Zhang, Z.Q. Hu, Y. Murata, M. Morinaga, N. Yukawa, Metall. Trans. A 24 (1993) 2451–2464.

  25. A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser, W.J. Quadakkers, Mater. Corros. 65 (2014) 178–187.

  26. J. Chang, D. Wang, G. Zhang, L. Lou, J. Zhang, Corros. Sci. 117 (2017) 35–42.

    Article  Google Scholar 

  27. P. Peng, Z. Liu, X. Yan, Y. Ma, H. Zhang, J. Wang, J. Mater. Res. Technol. 24 (2023) 4784–4795.

  28. H.J. Christ, L. Berchtold, H.J. Sockel, Oxid. Met. 26 (1986) 45–76.

  29. P. Peng, A. Zhang, J. Yue, X. Zhang, Y. Xu, J. Mater. Sci. Technol. 72 (2021) 197–201.

  30. J.Y. Ji, Z. Zhang, J. Chen, H. Zhang, Y.Z. Zhang, H. Lu, Vacuum 211 (2023) 111923.

  31. E.L. Simons, G.V. Browning, H.A. Liebhafsky, Corrosion 11 (1955) 17–26.

    Article  Google Scholar 

  32. Z.X. Shi, J.R. Li, S.Z. Liu., J. Iron Steel Res. Int. 19 (2012) No. 7, 66–70.

  33. N.S. Bornstein, M.A. DeCrescente, Metall. Trans. 2 (1971) 2875–2883.

  34. Wagner C., Zimens K., L.G. Sillén, A. Linnasalmi, P. Laukkanen, Acta Chem. Scand. 1 (1947) 547–565.

  35. P. Peng, W. Chen, Y. Xu, X. Pei, J. Wang, Metall. Mater. Trans. A 53 (2022) 382–387.

Download references

Acknowledgements

This study was funded by Key Science and Technology Projects of Gansu Province (Grant No. 22ZD6GB019), the Gansu Key Research and Development Project (Grant No. 23YFGA0003), Gansu Provincial Joint Research Fund (Grant No. 23JRRC0004), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2022-ey15) and the fund of the State Key Laboratory of Solidification Processing in NPU (Grant No. SKLSP202204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Peng or Su-jun Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Ma, Yf., Liu, Zj. et al. Effect of Ta content on high temperature oxidation and hot corrosion resistance of DZ411 superalloy. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01201-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01201-w

Keywords

Navigation