Skip to main content
Log in

Preparation of Si3N4–TiN–SiC composite by partial substitution of Ti–Si–Fe alloy for Si under N2 atmosphere

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Si3N4–TiN–SiC composites were prepared by partial substitution of the Ti–Si–Fe alloy extracted from high-titanium blast furnace slag for Si under nitrogen atmosphere. The nitridation, microstructure and mechanical properties of the composites were investigated in detail. The results show that Ti–Si–Fe alloy facilitated the nitridation of Si and full nitridation of Si was achieved in the compacts with 3.6–5.4 wt.% Ti–Si–Fe alloy additive, and thus, densification and mechanical performances of the composites were improved obviously. Propagating of microcracks induced by the volume expansions accompanying with the conversion of Ti5Si3 and TiSi2 to nitrides at 950–1050 °C built new N2(g) transport channels in the compacts. In the following up nitridation process, adequate N2(g) was transported through these channels into the compacts to fundamentally enhance contact of N2 with Si, facilitate and ensure the complete nitridation of internal Si. Moreover, the Ti–Si–Fe–Mn–N eutectic liquid played an important role in the formation of both α- and β-Si3N4, and the Fe in the Ti–Si–Fe alloy was of great importance for the formation of fibrous Si3N4 by the reaction between SiO(g) and N2(g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Liang, W. Zhao, L. Lu, H. Zhang, Y. Bi, J. Zhang, J. Liu, S. Zhang, Metall. Mater. Trans. A 50 (2019) 348–356.

    Article  Google Scholar 

  2. Z. Wang, E. Skybakmoen, T. Grande, J. Am. Ceram. Soc. 92 (2009) 1296–1302.

    Article  Google Scholar 

  3. H. Chen, J. Liu, W. Huang, Mater. Sci. Eng. A 415 (2006) 291–296.

    Article  Google Scholar 

  4. M. Long, Y. Li, H. Qin, W. Xue, P. Jiang, J. Sun, R.V. Kumar, Ceram. Int. 43 (2017) 10720–10725.

    Article  Google Scholar 

  5. H. Klemm, J. Am. Ceram. Soc. 93 (2010) 1501–1522.

    Article  Google Scholar 

  6. W. Wu, J. Gui, S. Wei, W. Xue, Z. Xie, J. Eur. Ceram. Soc. 36 (2016) 2667–2672.

    Article  Google Scholar 

  7. P. Tatarko, M. Kašiarová, J. Dusza, P. Šajgalík, J. Eur. Ceram. Soc. 33 (2013) 2259–2268.

    Article  Google Scholar 

  8. J. Chen, N. Li, Y. Wei, B. Han, W. Yan, J. Eur. Ceram. Soc. 37 (2017) 1821–1829.

    Article  Google Scholar 

  9. M. Rosa, F. Casaril, M. Valle, S. Poli, Ceram. Eng. Sci. Proceed. 35 (2015) 245–257.

    Article  Google Scholar 

  10. X. Zhu, Y. Zhou, K. Hirao, J. Mater. Sci. 39 (2004) 5785–5797.

    Article  Google Scholar 

  11. M. Long, Y. Li, X. Jin, G. Yao, J. Sun, R.V. Kumar, J. Am. Ceram. Soc. 101 (2018) 4350–4356.

    Article  Google Scholar 

  12. C. Ma, Y. Li, P. Jiang, X. Yue, J. Alloy. Compd. 938 (2023) 168723.

    Article  Google Scholar 

  13. C. Chen, X. Liang, M. Luo, S. Zhou, J. Ji, Z. Huang, M. Xu, Ceram. Int. 45 (2019) 5922–5926.

    Article  Google Scholar 

  14. H.L. Hu, Y.P. Zeng, K.H. Zuo, Y.F. Xia, D.X. Yao, J. Günster, J.G. Heinrich, S. Li, J. Eur. Ceram. Soc. 35 (2015) 3781–3787.

    Article  Google Scholar 

  15. J. Huang, Z. Huang, S. Yi, Y.G. Liu, M. Fang, S. Zhang, Sci. Rep. 3 (2013) 3504.

    Article  Google Scholar 

  16. J. Huang, Y.G. Liu, Z. Huang, M. Fang, S. Zhang, W. Xie, J. Yang, S. Huang, Y. Xu, Cryst. Growth Des. 13 (2013) 10–14.

    Article  Google Scholar 

  17. J. Huang, S. Zhang, Z. Huang, Y. Wen, M. Fang, Y. Liu, CrystEngComm 14 (2012) 7301.

    Article  Google Scholar 

  18. L. Zivkovic, Z. Nikolic, S. Boskovic, M. Miljkovic, J. Alloy. Compd. 373 (2004) 231–236.

    Article  Google Scholar 

  19. H. Borodianska, L. Krushinskaya, G. Makarenko, Y. Sakka, I. Uvarova, O. Vasylkiv, J. Nanosci. Nanotech. 9 (2009) 6381–6389.

    Article  Google Scholar 

  20. L. Maillé, Y. Le Petitcorps, J. Roger, J. Eur. Ceram. Soc. 37 (2017) 3885–3889.

    Article  Google Scholar 

  21. H. Alhussain, T. Mise, K. Kobayashi, H. Kiyono, J. Ceram. Soc. Japan 128 (2020) 677–684.

    Article  Google Scholar 

  22. H. Ding, X. Zhang, Q. Liu, W. Miao, J. Zhou, J. Wang, J. Mater. Res. Technol. 14 (2021) 1709–1723.

    Article  Google Scholar 

  23. L. Han, L. Dong, F. Li, H. Duan, H. Zhang, G. Li, Q. Jia, S. Zhang, J. Eur. Ceram. Soc. 42 (2022) 2699–2706.

    Article  Google Scholar 

  24. J.C. Han, G.Q. Chen, S.Y. Du, J.V. Wood, J. Eur. Ceram. Soc. 20 (2000) 927–932.

    Article  Google Scholar 

  25. X.J. Zhang, Y.T. Zheng, J.C. Han, X.H. Yang, Mater. Sci. Forum 546-549 (2007) 1615–1618.

    Article  Google Scholar 

  26. X. Zhang, Y. Zheng, J. Han, L. Zhou, Journal of the Chinese Ceramic Society 34 (2006) 708–712.

    Google Scholar 

  27. J.H. Zhang, S. Xiong, C.M. Ke, H.D. Wu, X.R. Lei, Key Eng. Mater. 768 (2018) 159–166.

    Article  Google Scholar 

  28. L. Yao, C. Ke, J. Zhang, Y. Li, B. Han, J. Wang, Ceram. Int. 48 (2022) 31203–31210.

    Article  Google Scholar 

  29. Z. Chen, W. Yan, Y. Dai, S. Schafföner, B. Han, N. Li, Ceram. Int. 45 (2019) 8533–8538.

    Article  Google Scholar 

  30. L. Maillé, M.A. Dourges, S. Le Ber, P. Weisbecker, F. Teyssandier, Y. Le Petitcorps, R. Pailler, Appl. Surf. Sci. 260 (2012) 29–31.

    Article  Google Scholar 

  31. M. Long, Y. Li, H. Qin, W. Xue, J. Chen, J. Sun, R. Vasant Kumar, Ceram. Int. 42 (2016) 16448–16452.

  32. S.M. Boyer, A.J. Moulson, J. Mater. Sci. 13 (1978) 1637–1646.

    Article  Google Scholar 

  33. X. Qin, J. Zhang, C. Ke, H. Chen, L. Zhao, Inorg. Chem. Commun. 148 (2023) 110278.

    Article  Google Scholar 

  34. Y. Ge, S. Sun, Q. Wang, W. Cui, Y. Zou, Z. Xie, K. Chen, J. Am. Ceram. Soc. 99 (2016) 1464–1471.

    Article  Google Scholar 

  35. B. Ma, Y. Tang, C. Deng, Int. J. Appl. Ceram. Technol. 19 (2022) 2523–2532.

    Google Scholar 

  36. L. Sun, Y. Tang, Y. Cui, T. Du, C. Zhou, B. Ma, J. Wang, Int. J. Appl. Ceram. Technol. 20 (2023) 1269–1277.

    Article  Google Scholar 

  37. L. Han, J. Wang, F. Li, H. Wang, X. Deng, H. Zhang, S. Zhang, J. Eur. Ceram. Soc. 38 (2018) 1210–1218.

    Article  Google Scholar 

  38. Y. Bi, H. Wang, L. Huang, J. Wang, H. Zhang, S. Zhang, Ceram. Int. 43 (2017) 15755–15761.

    Article  Google Scholar 

  39. X. Guo, J. Gu, X. Hu, S. Zhang, Z. Chen, S. Huang, Catal. Today 350 (2020) 91–99.

    Article  Google Scholar 

  40. L. Gao, F. Wang, M.A. Yu, F. Wei, J. Qi, S. Lin, D. Xie, J. Mater. Chem. A 7 (2019) 19838–19845.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Foundation of the State Key Laboratory of Refractories and Metallurgy (Grant No. 2018QN11) and National Science and Technology Pillar Program during the Twelfth Five-Year Plan (Grant No. 2011BAB05B05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-hua Zhang or Bing-qiang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Ly., Zhang, Jh., Han, Bq. et al. Preparation of Si3N4–TiN–SiC composite by partial substitution of Ti–Si–Fe alloy for Si under N2 atmosphere. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01196-4

Keywords

Navigation