Skip to main content
Log in

Selective sintering of magnesia–calcia materials by utilizing hot spots during induction sintering process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Magnesia–calcia refractories are widely used in the production process of clean steel due to their excellent high-temperature stability, slag resistance and ability to purify molten steel. However, there are still problems such as difficult sintering and easy hydration. Magnesia–calcia materials with various calcium oxide contents were prepared by using induction sintering, and the sintering property combined with the hydration resistance of the materials was investigated. The experimental results showed that the magnesia–calcia materials prepared under induction field had higher density, microhardness and hydration resistance. In particular, the relative density of induction sintered magnesia–calcia materials with 50 mol% CaO was greater than 98%, and the average grain size of CaO was 4.56 μm, which was much larger than that of traditional sintered materials. In order to clarify the densification and microstructure evolution mechanism of the magnesia–calcia materials, the changes in temperature and magnetic field throughout the sintering process were analyzed by using finite element simulation. The results showed that the larger heating rate and higher sintering temperature under the induction sintering mode were beneficial to the rapid densification. In addition, the hot spots generated within the material due to the difference in high-temperature electric conductivity between MgO and CaO were the critical factor to realize selective sintering in MgO–CaO system, which provides a novel pathway to solve the problem of difficult sintering and control the microstructure of high-temperature composite material used in the field of high-purity steel smelting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Liu, Y.X. Zhu, Z.F. Wang, Y. Ma, X.T. Wang, J. Iron Steel Res. Int. 30 (2023) 2021–2030.

    Google Scholar 

  2. C. Yu, B. Dong, Y.F. Chen, B.Y. Ma, J. Ding, C.J. Deng, H.X. Zhu, J.H. Di, J. Iron Steel Res. Int. 29 (2022) 1052–1062.

    Google Scholar 

  3. X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.

    Google Scholar 

  4. S.M. Liang, R. Schmid-Fetzer, J. Eur. Ceram. Soc. 38 (2018) 4768–4785.

    Google Scholar 

  5. N.M. Ghoneim, M.A. Mandour, M.A. Serry, Ceram. Int. 16 (1990) 215–223.

    Google Scholar 

  6. A. Ghosh, H.S. Tripathi, Ceram. Int. 38 (2012) 1315–1318.

    Google Scholar 

  7. M. Chen, N. Wang, J. Yu, A. Yamaguchi, J. Eur. Ceram. Soc. 27 (2007) 1953–1959.

    Google Scholar 

  8. A. Shahraki, S. Ghasemi-kahrizsangi, A. Nemati, Mater. Chem. Phys. 198 (2017) 354–359.

    Google Scholar 

  9. H.G. Dehsheikh, S. Ghasemi-Kahrizsangi, Ceram. Int. 43 (2017) 16780–16786.

    Google Scholar 

  10. H.G. Dehsheish, E. Karamian, R.G. Owsalou, S. Ghasemi-Kahrizsangi, N. Vefgh, A. Soheily, Ceram. Int. 44 (2018) 15880–15886.

    Google Scholar 

  11. S. Ghasemi Kahrizsangi, A. Nemati, A. Shahraki, M. Farooghi, Int. J. Eng. Trans. A 29 (2016) 539–545.

    Google Scholar 

  12. S. Ghasemi-Kahrizsangi, A. Shahraki, M. Farooghi, Iran. J. Sci. Technol. Trans. Sci. 42 (2018) 567–575.

    Google Scholar 

  13. H.R. Zargar, C. Oprea, G. Oprea, T. Troczynski, Ceram. Int. 38 (2012) 6235–6241.

    Google Scholar 

  14. S. Ghasemi-Kahrizsangi, M. Barati Sedeh, H. Gheisari Dehsheikh, A. Shahraki, M. Farooghi, Ceram. Int. 42 (2016) 15658–15663.

    Google Scholar 

  15. M. Chen, C. Lu, J. Yu, J. Eur. Ceram. Soc. 27 (2007) 4633–4638.

    Google Scholar 

  16. S. Chen, G. Chen, J. Cheng, F. Tian, J. Am. Ceram. Soc. 83 (2000) 1810–1812.

    Google Scholar 

  17. I.J. Shon, Ceram. Int. 42 (2016) 19406–19412.

    Google Scholar 

  18. N.R. Park, H.C. Jeong, I.J. Shon, J. Nanosci. Nanotechnol. 19 (2019) 2354–2357.

    Google Scholar 

  19. H.C. Kim, I.J. Shon, Z.A. Munir, J. Mater. Sci. 40 (2005) 2849–2854.

    Google Scholar 

  20. X. Chen, Y. Wu, Scripta Mater. 162 (2019) 14–17.

    Google Scholar 

  21. T. Kato, G. Okada, T. Yanagida, J. Mater. Sci. Mater. Electron. 28 (2017) 7018–7023.

    Google Scholar 

  22. Y.N. Liu, J.Q. Zhu, B. Dai, Ceram. Int. 46 (2020) 25738–25740.

    Google Scholar 

  23. S.K. Jha, R. Raj, J. Am. Ceram. Soc. 97 (2014) 527–534.

    Google Scholar 

  24. O. Guillon, R.A. De Souza, T.P. Mishra, W. Rheinheimer, MRS Bull. 46 (2021) 52–58.

    Google Scholar 

  25. D. Tong, J. Gu, F. Yang, J. Mater. Process. Technol. 262 (2018) 277–289.

    Google Scholar 

  26. J. Min, G. Zhu, Y. Yuan, J. Liu, Sci. Technol. Nucl. Ins. 2021 (2021) 9922503.

    Google Scholar 

  27. H. Heidari, M.H. Tavakoli, A. Shokri, B. Mohamad Moradi, O. Mohammad Sharifi, M.J.M. Asaad, Cryst. Res. Technol. 55 (2020) 1900147.

    Google Scholar 

  28. K.J. Chang, M.L. Cohen, Phys. Rev. B 30 (1984) 4774–4781.

    Google Scholar 

  29. E.L. Albuquerque, M.S. Vasconcelos, J. Phys. Conf. Ser. 100 (2008) 042006.

    Google Scholar 

  30. X. Hong, D.D.L. Chung, Carbon 91 (2015) 1–10.

    Google Scholar 

  31. S.O. Tan, O. Çiçek, Ç.G. Türk, Ş. Altındal, Eng. Sci. Technol. 27 (2022) 101017.

    Google Scholar 

  32. D.W. Peters, L. Feinstein, C. Peltzer, J. Chem. Phys. 42 (1965) 2345–2346.

    Google Scholar 

  33. J.S. Thorp, N.E. Rad, D. Evans, C.D.H. Williams, J. Mater. Sci. 21 (1986) 3091–3096.

    Google Scholar 

  34. A. Lempicki, Proc. Phys. Soc. B 66 (1953) 281–283.

    Google Scholar 

  35. J. Yu, S. Zhang, Y. Liu, J. Wang, Mater. Sci. Technol. 37 (2021) 1060–1072.

    Google Scholar 

  36. J.H. Yang, Y.W. Kim, J.H. Kim, D.J. Kim, K.W. Kang, Y.W. Rhee, K.S. Kim, K.W. Song, J. Am. Ceram. Soc. 91 (2008) 3202–3206.

    Google Scholar 

  37. M. Biesuz, T. Saunders, D. Ke, M.J. Reece, C. Hu, S. Grasso, J. Mater. Sci. Technol. 69 (2021) 239–272.

    Google Scholar 

  38. J.M. Chaix, R. Bouchet, D. Bouvard, T. Fabre, T. Garnault, C. Harnois, K. Koutoati, M. Lachal, S. Marinel, M.C. Steil, Adv. Eng. Mater. 25 (2023) 2201742.

    Google Scholar 

  39. B.N.J. Persson, Surf. Sci. 269–270 (1992) 103–112.

    Google Scholar 

  40. Y.H. Liang, S.Q. Xiang, T.Y. Li, C. Yu, K. Leng, X.F. Zhang, J. Am. Ceram. Soc. 104 (2021) 6131–6143.

    Google Scholar 

  41. N.A. Surplice, Br. J. Appl. Phys. 17 (1966) 175–180.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express the gratitude for the financial support from the National Natural Science Foundation of China (U20A20239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-fu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Yj., Wang, Zf., Liu, H. et al. Selective sintering of magnesia–calcia materials by utilizing hot spots during induction sintering process. J. Iron Steel Res. Int. 31, 1914–1922 (2024). https://doi.org/10.1007/s42243-023-01164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01164-4

Keywords

Navigation