Skip to main content
Log in

Ferrite features in simulated transition zone of EH36 shipbuilding steel submerged arc welded by CaF2–SiO2–MnO fluxes

  • Short Communication
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Ferrite features in the simulated transition zone welded with CaF2–SiO2–MnO fluxes containing various MnO contents have been investigated. Confocal laser scanning microscopy has been applied to simulate the thermal cycling of the transition zone and the phase transformations during cooling have been in-situ observed. It has been found that the appearance temperature for ferrite side plate decreases with increasing Mn content in the weld metals caused by MnO content increasing. Meanwhile, growth rates for both ferrite side plate and acicular ferrite are significantly enhanced with a higher Mn content of weld metal. Furthermore, from the statistical fractions of salient microstructures, for all samples, the acicular ferrite, grain boundary ferrite, and polygonal ferrite take over more than 90%. It has also been demonstrated that with the increase in Mn content, the ferrite side plate fraction increases slightly from 5% to 10% and the acicular ferrite fraction shows a tendency of first increasing and then decreasing, which experiences the maximum with the flux containing 30 wt.% MnO. This phenomenon is believed to be controlled by the O and Mn contents in weld metals synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. X. Xie, M. Zhong, T. Zhao, C. Wang, J. Iron Steel Res. Int. 30 (2023) 150–157.

    Google Scholar 

  2. M. Zhong, D.M. Guo, S. Basu, C. Wang, J. Iron Steel Res. Int. 30 (2023) 1873–1878.

    Google Scholar 

  3. M. Zhong, L. Jiang, H.Y. Bai, S. Basu, Z.J. Wang, C. Wang, J. Iron Steel Res. Int. 30 (2023) 569–579.

    Google Scholar 

  4. X.D. Zou, J.C. Sun, D.P. Zhao, H. Matsuura, C. Wang, J. Iron Steel Res. Int. 25 (2018) 164–172.

    Google Scholar 

  5. N.A. McPherson, K. Chi, T.N. Baker, J. Mater. Process. Technol. 134 (2003) 174–179.

    Google Scholar 

  6. C. Wang, J. Zhang, Acta Metall. Sin. 57 (2021) 1126–1140.

    Google Scholar 

  7. A.K. Mondal, P. Biswas, S. Bag, Int. J. Steel Struct. 17 (2017) 9–18.

    Google Scholar 

  8. J. Luo, Y. Yuan, X. Wang, Z. Yao, J. Mater. Eng. Perform. 22 (2013) 2477–2486.

    Google Scholar 

  9. J. Frei, B.T. Alexandrov, M. Rethmeier, Weld. World 62 (2018) 317–324.

    Google Scholar 

  10. B.T. Alexandrov, J.C. Lippold, J.W. Sowards, A.T. Hope, D.R. Saltzmann, Weld. World 57 (2013) 39–53.

    Google Scholar 

  11. X. Xie, M. Zhong, T. Zhao, C. Wang, Sci. Technol. Weld. Join. 27 (2022) 472–478.

    Google Scholar 

  12. Y. Wang, L.G. Zhu, J.X. Huo, Q.J. Zhang, Y.G. Wu, W. Chen, S.M. Wang, J. Iron Steel Res. Int. 29 (2022) 1277–1290.

    Google Scholar 

  13. S. Kumar, A.S. Shahi, Mater. Des. 32 (2011) 3617–3623.

    Google Scholar 

  14. M. Minagawa, K. Ishida, Y. Funatsu, S. Imai, Nippon Steel Tech. Rep. 57 (2004) 6–8.

    Google Scholar 

  15. Y. Wu, X. Yuan, I. Kaldre, M. Zhong, Z. Wang, C. Wang, Metall. Mater. Trans. B 54 (2023) 50–55.

    Google Scholar 

  16. T. Liu, M.J. Long, W.J. He, D.F. Chen, Z.H. Dong, X.G. Zhang, H.M. Duan, J. Iron Steel Res. Int. 26 (2019) 162–172.

    Google Scholar 

  17. G. Ji, X.H. Gao, Z.G. Liu, K. Zhang, J. Iron Steel Res. Int. 26 (2019) 292–300.

    Google Scholar 

  18. M. Zhang, X. Ren, K. Xing, J. Li, Acta Metall. Sin. 29 (2015) 737–743.

    Google Scholar 

  19. P.V.S.S. Sridhar, P. Biswas, P. Mahanta, J. Braz. Soc. Mech. Sci. Eng. 42 (2020) 551.

    Google Scholar 

  20. R. Homma, K. Kadoi, H. Inoue, Mater. Today Commun. 29 (2021) 102963.

    Google Scholar 

  21. H. Ding, Z.Y. Tang, W. Li, M. Wang, D. Song, J. Iron Steel Res. Int. 13 (2006) No. 6, 66–70.

    Google Scholar 

  22. J. Zhang, J. Leng, C. Wang, Metall. Mater. Trans. B 50 (2019) 2083–2087.

    Google Scholar 

  23. X. Zou, L. Zhou, H. Matsuura, C. Wang, JOM 73 (2021) 1110–1117.

    Google Scholar 

  24. J. Pu, S. Yu, Y. Li, J. Mater. Process. Technol. 240 (2017) 145–153.

    Google Scholar 

  25. D.M. Field, D.J. Magagnosc, B.C. Hornbuckle, J.T. Lloyd, K.R. Limmer, Metall. Mater. Trans. A 53 (2022) 2530–2543.

    Google Scholar 

  26. D. Loder, S.K. Michelic, C. Bernhard, J. Mater. Sci. Res. 6 (2016) 24–43.

    Google Scholar 

  27. Y. Yang, D. Zhan, H. Lei, G. Qiu, Y. Li, Z. Jiang, H. Zhang, Metall. Mater. Trans. B 50 (2019) 2536–2546.

    Google Scholar 

  28. X. Wan, K. Wu, L. Cheng, R. Wei, ISIJ Int. 55 (2015) 679–685.

    Google Scholar 

  29. X. Zou, J. Sun, H. Matsuura, C. Wang, Metall. Mater. Trans. B 49 (2018) 2168–2173.

    Google Scholar 

  30. B.V.R. Tata, B. Raj, Bull. Mater. Sci. 21 (1998) 263–278.

    Google Scholar 

  31. W. Mu, P. Hedström, H. Shibata, P.G. Jönsson, K. Nakajima, JOM 70 (2018) 2283–2295.

    Google Scholar 

  32. J. Zhang, C. Wang, T. Coetsee, Metall. Mater. Trans. B 52 (2021) 1937–1944.

    Google Scholar 

  33. J. Zhang, T. Coetsee, C. Wang, Metall. Mater. Trans. B 51 (2020) 16–21.

    Google Scholar 

  34. J. Zhang, T. Coetsee, H. Dong, C. Wang, Metall. Mater. Trans. B 51 (2020) 1805–1812.

    Google Scholar 

  35. J. Zhang, T. Coetsee, H. Dong, C. Wang, Metall. Mater. Trans. B 51 (2020) 885–890.

    Google Scholar 

  36. J. Zhang, T. Coetsee, H. Dong, C. Wang, Metall. Mater. Trans. B 51 (2020) 1350–1354.

    Google Scholar 

  37. J. Zhang, T. Coetsee, H. Dong, C. Wang, Metall. Mater. Trans. B 51 (2020) 1953–1957.

    Google Scholar 

  38. J. Zhang, T. Coetsee, S. Basu, C. Wang, Calphad 71 (2020) 102195.

    Google Scholar 

  39. Q. Gao, Y. Min, C.J. Liu, M.F. Jiang, J. Iron Steel Res. Int. 24 (2017) 1152–1158.

    Google Scholar 

  40. G.H. Zhang, Y.L. Zhen, K.C. Chou, J. Iron Steel Res. Int. 23 (2016) 633–637.

    Google Scholar 

  41. X. Yuan, Y. Wu, M. Zhong, S. Basu, Z. Wang, C. Wang, Sci. Technol. Weld. Join. 27 (2022) 683–690.

    Google Scholar 

  42. X. Yuan, M. Zhong, Y. Wu, C. Wang, Metall. Mater. Trans. B 53 (2022) 656–661.

    Google Scholar 

  43. Y. Zhang, Z. Wang, J. Zhang, Z. Li, S. Basu, C. Wang, Metall. Mater. Trans. B 53 (2022) 2814–2823.

    Google Scholar 

  44. Y. Zhang, J. Zhang, H. Liu, Z. Wang, C. Wang, Metall. Mater. Trans. B 53 (2022) 1329–1334.

    Google Scholar 

  45. M. Zhong, T. Li, S. Basu, Z. Wang, C. Wang, Metall. Mater. Trans. B 53 (2022) 2774–2778.

    Google Scholar 

  46. X. Zou, J. Sun, H. Matsuura, C. Wang, Metall. Mater. Trans. A 51 (2020) 1044–1050.

    Google Scholar 

  47. X. Zou, D. Zhao, J. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2018) 481–489.

    Google Scholar 

  48. M. Zhong, Y. He, P.C. Pistorius, B.A. Webler, Int. J. Refract. Met. Hard Mater. 92 (2020) 105271.

    Google Scholar 

  49. M. Zhong, Y. He, E.A. Milligan, P.C. Pistorius, B.A. Webler, Oxid. Met. 93 (2020) 449–463.

    Google Scholar 

  50. X.L. Wan, K.M. Wu, K.C. Nune, Y. Li, L. Cheng, Sci. Technol. Weld. Join. 20 (2015) 254–263.

    Google Scholar 

  51. J. Liu, G. Wen, P. Tang, Metall. Mater. Trans. B 48 (2017) 3074–3082.

    Google Scholar 

  52. H. Yao, Q. Ren, W. Yang, L. Zhang, Metall. Mater. Trans. B 53 (2022) 1827–1840.

    Google Scholar 

  53. R.A. Farrar, P.L. Harrison, J. Mater. Sci. 22 (1987) 3812–3820.

    Google Scholar 

  54. J.S. Byun, J.H. Shim, Y.W. Cho, Scripta Mater. 48 (2003) 449–454.

    Google Scholar 

  55. G.C. Jin, S.Y. Chen, Q.C. Li, G.W. Chang, X.D. Yue, J. Iron Steel Res. Int. 20 (2013) 94–98.

    Google Scholar 

  56. C.K. Lin, Y.C. Pan, W.S. Hwang, Y.C. Fang, Y.H. Su, G.R. Lin, Y.F. Wu, Ironmak. Steelmak. 46 (2019) 176–183.

    Google Scholar 

  57. P.L. Harrison, R.A. Farrar, J. Mater. Sci. 16 (1981) 2218–2226.

    Google Scholar 

  58. X. Xie, M. Zhong, P. Zhao, H. Yu, C. Wang, Metall. Mater. Trans. A 54 (2023) 2532–2538.

    Google Scholar 

  59. E. Sobotka, J. Kreyca, N. Fuchs, T. Wojcik, E. Kozeschnik, E. Povoden-Karadeniz, Metall. Mater. Trans. A 54 (2023) 2903–2923.

    Google Scholar 

  60. F. Liu, M. Li, Y. Bi, T. He, Y. Liu, G. Yuan, Mater. Today Commun. 37 (2023) 107210.

    Google Scholar 

  61. L. Song, Y. Peng, H. Zhao, Y. Cao, Adv. Eng. Mater. 24 (2022) 2101549.

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Spring Sunshine Plan (Chunhui) Research Project of Ministry of Education of China (Grant No. HZKY20220437), the State Key Laboratory of Refractories and Metallurgy (Grant No. G202206), the National Natural Science Foundation of China (Grant Nos. U20A20277 and 52150610494), and the National Key Research and Development Program of China (Grant No. 2022YFE0123300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhong.

Ethics declarations

Conflict of Interest

Ming Zhong is a youth editorial board member and Cong Wang is an editorial board member for Journal of Iron and Steel Research International and were not involved in the editorial review or the decision to publish this article. The authors have no relevant financial or nonfinancial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Hu, D., Guo, Dm. et al. Ferrite features in simulated transition zone of EH36 shipbuilding steel submerged arc welded by CaF2–SiO2–MnO fluxes. J. Iron Steel Res. Int. 31, 790–796 (2024). https://doi.org/10.1007/s42243-023-01162-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01162-6

Keywords

Navigation