Skip to main content
Log in

Hydrogen storage thermodynamics and kinetics of as-cast Ce–Mg–Ni-based alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The reaction kinetics of alloys based on magnesium are known to be greatly improved by the partial substitution of Mg with rare earths and transition metals, particularly Ni. The enhanced superficial hydrogen dissociation rate, the weakened Mg–H bond and the lower activation energy following element replacement are thought to be related to the better performance. The experimental alloys Ce5Mg95−xNix (x = 5, 10, 15) were smelted by the vacuum induction melting. The phase transformation and structural evolution of experimental alloys before and after reaction with hydrogen were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The cast specimens contain CeMg12, Mg and Mg2Ni phases, and the increase in Ni content results in an obvious growth of Mg2Ni phase. The isothermal and non-isothermal hydrogenation and dehydrogenation kinetics of the experimental specimens were investigated using the Sievert apparatus, differential scanning calorimetry and thermal gravimetric analyzer. The activation energy may be calculated using the Arrhenius and Kissinger equations. The experimental alloys have been shown to have good activation properties, with a reversible hydriding and dehydriding capacities of around 5.0 wt.% in the first cycle. The initial dehydrogenation temperature of MgH2 decreases from 557.5 to 537.7 K with changing Ni content from 5 to 15 at.%. The dehydrogenation activation energy also reduces from 77.09 to 62.96 kJ/mol, which explains the improved hydrogen storage performance caused by Ni substitution. It can be shown that the impact of Ni on the decomposition enthalpy of MgH2 is quite modest, with the absolute enthalpy (ΔHr) only decreasing from 78.48 to 76.15 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I.P. Jain, Int. J. Hydrogen Energy 34 (2009) 7368–7378.

    Article  CAS  Google Scholar 

  2. A. Bhatnagar, M.A. Shaz, O.N. Srivastava, Int. J. Hydrogen Energy 44 (2019) 6738–6747.

    Article  CAS  Google Scholar 

  3. H. Chen, T. Zhang, L. Xie, L. Song, Int. J. Hydrogen Energy 44 (2019) 10788–10799.

    Article  CAS  Google Scholar 

  4. D. Khan, J. Zou, M. Pan, Z. Ma, W. Zhu, T. Huang, X. Zeng, W. Ding, Int. J. Hydrogen Energy 44 (2019) 15146–15158.

    Article  CAS  Google Scholar 

  5. D. Parra, L. Valverde, F.J. Pino, M.K. Patel, Renew. Sustain. Energy Rev. 101 (2019) 279–294.

    Article  CAS  Google Scholar 

  6. N.F. Attia, M.M. Menemparabath, S. Arepalli, K.E. Geckeler, Int. J. Hydrogen Energy 38 (2013) 9251–9262.

    Article  CAS  Google Scholar 

  7. X. Huang, A. Tao, J. Guo, W. Wei, J. Guo, Z. Lan, Int. J. Hydrogen Energy 43 (2018) 1651–1657.

    Article  CAS  Google Scholar 

  8. M.K. Singh, A. Bhatnagar, S.K. Pandey, P.C. Mishra, O.N. Srivastava, Int. J. Hydrogen Energy 42 (2017) 960–968.

    Article  CAS  Google Scholar 

  9. V. Bhat, A. Rougier, L. Aymard, G. Nazri, J. Tarascon, Int. J. Hydrogen Energy 32 (2007) 4900–4906.

    Article  CAS  Google Scholar 

  10. B. Galey, A. Auroux, S. Sabo-Etienne, M. Grellier, G. Postole, Int. J. Hydrogen Energy 44 (2019) 11939–11952.

    Google Scholar 

  11. Á. Révész, M. Gajdics, E. Schafler, M. Calizzi, L. Pasquini, J. Alloy. Compd. 702 (2017) 84–91.

    Article  Google Scholar 

  12. Y. Jia, X. Yao, Int. J. Hydrogen Energy 42 (2017) 22933–22941.

    Article  CAS  Google Scholar 

  13. L.F. Contreras Vasquez, Y. Liu, C. Paterakis, D. Reed, D. Book, Int. J. Hydrogen Energy 42 (2017) 22589–22597.

    Article  CAS  Google Scholar 

  14. W. Su, Y. Zhu, J. Zhang, Y. Liu, Y. Yang, Q. Mao, L. Li, J. Alloy. Compd. 669 (2016) 8–18.

    Article  CAS  Google Scholar 

  15. M. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee, M.S. Yahya, Int. J. Hydrogen Energy 44 (2019) 318–324.

    Article  CAS  Google Scholar 

  16. R. Lan, T.S. Irvine, S.W. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494.

    Article  CAS  Google Scholar 

  17. N.A.A. Rusman, M. Dahari, Int. J. Hydrogen Energy 41 (2016) 12108–12126.

    Article  CAS  Google Scholar 

  18. X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48.

    Article  Google Scholar 

  19. S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, Catal. Today 120 (2007) 246–256.

    Article  CAS  Google Scholar 

  20. T. Liu, C. Wang, Y. Wu, Int. J. Hydrogen Energy 39 (2014) 14262–14274.

    Article  CAS  Google Scholar 

  21. X.B. Xie, M. Chen, M.M. Hu, B.L. Wang, R.H. Yu, T. Liu, Int. J. Hydrogen Energy 44 (2019) 10694–10712.

    Article  CAS  Google Scholar 

  22. X. Zhang, Z. Shen, N. Jian, J. Hu, F. Du, J. Yao, M. Gao, Y. Liu, H. Pan, Int. J. Hydrogen Energy 43 (2018) 23327–23335.

    Article  CAS  Google Scholar 

  23. L. Schlapbach, A. Züttel, Nature 414 (2001) 353–358.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. H.J. Lin, C. Zhang, H. Wang, L. Ouyang, Y. Zhu, L. Li, W. Wang, M. Zhu, J. Alloy. Compd. 685 (2016) 272–277.

    Article  CAS  Google Scholar 

  25. J. Cermak, L. Kral, P. Roupcova, Int. J. Hydrogen Energy 44 (2019) 8315–8324.

    Article  CAS  Google Scholar 

  26. M. Liu, X. Xiao, S. Zhao, S. Saremi-Yarahmadi, M. Chen, J. Zheng, S. Li, L. Chen, Int. J. Hydrogen Energy 44 (2019) 1059–1069.

    Article  CAS  Google Scholar 

  27. X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, Mater. Today Nano 9 (2020) 100064.

    Article  Google Scholar 

  28. V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, et al., Int. J. Hydrogen Energy 44 (2019) 7809–7859.

    Article  CAS  Google Scholar 

  29. Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 44 (2020) 171–190.

    Article  CAS  Google Scholar 

  30. H. Shao, L. He, H. Lin, H.W. Li, Energy Technol. 6 (2018) 445–458.

    Article  Google Scholar 

  31. L.Z. Ouyang, F. Liu, H. Wang, J.W. Liu, X.S. Yang, L.X. Sun, M. Zhu, J. Alloy. Compd. 832 (2020) 154865.

    Article  CAS  Google Scholar 

  32. B. Li, J. Li, H. Zhao, X. Yu, H. Shao, Int. J. Hydrogen Energy 44 (2019) 6007–6018.

    Article  CAS  Google Scholar 

  33. E.A. Lass, Int. J. Hydrogen Energy 36 (2011) 14496–14502.

    Article  CAS  Google Scholar 

  34. M. Tian, C. Shang, Int. J. Hydrogen Energy 44 (2019) 338–344.

    Article  CAS  Google Scholar 

  35. J.J. Márquez, D.R. Leiva, R. Floriano, J. Soyama, W.B. Silva, T.T. Ishikawa, C.S. Kiminami, W.J. Botta, Int. J. Hydrogen Energy 43 (2018) 13348–13355.

    Article  Google Scholar 

  36. S. Qiu, W. Gao, X. Ma, H. Chu, Y. Zou, C. Xiang, H. Zhang, F. Xu, L. Sun, Int. J. Hydrogen Energy 43 (2018) 13975–13980.

    Article  CAS  Google Scholar 

  37. M. Lototskyy, J. Goh, M.W. Davids, V. Linkov, L. Khotseng, B. Ntsendwana, R. Denys, V.A. Yartys, Int. J. Hydrogen Energy 44 (2019) 6687–6701.

    Article  CAS  Google Scholar 

  38. X. Huang, X.Z. Xiao, W. Zhang, X.L. Fan, C.J. Cheng, S.Q. Li, H.W. Ge, Q.D. Wang, L.X. Chen, Phys. Chem. Chem. Phys. 19 (2017) 4019–4029.

    Article  CAS  PubMed  Google Scholar 

  39. D. Korablov, F. Besenbacher, T.R. Jensen, Int. J. Hydrogen Energy 43 (2019) 16804–16814.

    Article  Google Scholar 

  40. X. Zhang, Z. Leng, M. Gao, J. Hu, F. Du, J. Yao, H. Pan, Y. Liu, J. Power Sources 398 (2018) 183–192.

    Article  ADS  CAS  Google Scholar 

  41. Z. Lan, Z. Sun, Y. Ding, H. Ning, W. Wei, J. Guo, J. Mater. Chem. A 5 (2017) 15200–15207.

    Article  CAS  Google Scholar 

  42. M. Jangir, A. Jain, S. Yamaguchi, T. Ichikawa, C. Lal, I.P. Jain, Int. J. Hydrogen Energy 41 (2016) 14178–14183.

    Article  CAS  Google Scholar 

  43. I.E. Malka, M. Pisarek, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy 36 (2011) 12909–12917.

    Article  CAS  Google Scholar 

  44. M. Jangir, A. Jain, S. Agarwal, T. Zhang, S. Kumar, S. Selvaraj, T. Ichikawa, I.P. Jain, Int. J. Energy Res. 42 (2018) 1139–1147.

    Article  CAS  Google Scholar 

  45. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 10808–10815.

    Article  CAS  Google Scholar 

  46. J. Zou, X. Zeng, Y. Ying, X. Chen, H. Guo, S. Zhou, W. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346.

    Article  CAS  Google Scholar 

  47. H. Yong, S. Guo, Z. Yuan, Y. Qi, D. Zhao, Y. Zhang, Renew. Energy 157 (2020) 828–839.

    Article  CAS  Google Scholar 

  48. T. Yang, Q. Li, N. Liu, C. Liang, F. Yin, Y. Zhang, J. Power Sources 378 (2018) 636–645.

    Article  ADS  CAS  Google Scholar 

  49. H.J. Lin, J.J. Tang, Q. Yu, H. Wang, L.Z. Ouyang, Y.J. Zhao, J.W. Liu, W.H. Wang, M. Zhu, Nano Energy 9 (2014) 80–87.

    Article  CAS  Google Scholar 

  50. J. Cermak, B. David, Int. J. Hydrogen Energy 36 (2011) 13614–13620.

    Article  CAS  Google Scholar 

  51. T. Yang, P. Wang, C.Q. Xia, Q. Li, C.Y. Liang, Y.H. Zhang, Int. J. Hydrogen Energy 44 (2019) 6728–6737.

    Article  CAS  Google Scholar 

  52. J.J. Reilly Jr., R.H. Wiswall Jr., Inorg. Chem. 7 (1968) 2254–2256.

    Article  CAS  Google Scholar 

  53. Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scripta Mater. 193 (2021) 127–131.

    Article  CAS  Google Scholar 

  54. Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloy. Compd. 814 (2020) 152297.

    Article  CAS  Google Scholar 

  55. W.Q. Jiang, Y.J. Chen, M.R. Hu, C.F. Zeng, C. Liang, J. Alloy. Compd. 887 (2021) 161381.

    Article  CAS  Google Scholar 

  56. H.C. Zhong, H. Wang, J.W. Liu, D.L. Sun, M. Zhu, Scripta Mater. 65 (2011) 285–287.

    Article  CAS  Google Scholar 

  57. H. Wang, H. Zhong, L. Ouyang, J. Liu, D. Sun, Q. Zhang, M. Zhu, J. Phys. Chem. C 118 (2014) 12087–12096.

    Article  CAS  Google Scholar 

  58. Z.S. Wronski, G.J.C. Carpenter, T. Czujko, R.A. Varin, Int. J. Hydrogen Energy 36 (2011) 1159–1166.

    Article  CAS  Google Scholar 

  59. Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.

    Article  CAS  Google Scholar 

  60. H. Yong, S. Guo, Z. Yuan, Y. Qi, D. Zhao, Y. Zhang, J. Mater. Sci. Technol. 51 (2020) 84–93.

    Article  CAS  Google Scholar 

  61. Z. Li, S. Li, Z. Yuan, Y. Zhang, J. Zhang, Int. J. Hydrogen Energy 44 (2019) 24839–24848.

    Article  CAS  Google Scholar 

  62. Y.Z. Li, J. Yang, L. Luo, F. Hu, T.T. Zhai, Z.W. Zhao, Y.H. Zhang, D.L. Zhao, Int. J. Hydrogen Energy 44 (2019) 7371–7380.

    Article  CAS  Google Scholar 

  63. W. Oelerich, T. Klassen, R. Bormann, J. Alloy. Compd. 315 (2001) 237–242.

    Article  CAS  Google Scholar 

  64. W. Oelerich, T. Klassen, R. Bormann, J. Alloy. Compd. 322 (2001) L5–L9.

    Article  CAS  Google Scholar 

  65. Y. Pan, H. Leng, J. Wei, Q. Li, Int. J. Hydrogen Energy 38 (2013) 10461–10469.

    Article  CAS  Google Scholar 

  66. P. Yao, Y. Jiang, Y. Liu, C. Wu, K.C. Chou, T. Lyu, Q. Li, J. Magn. Alloy. 8 (2020) 461–471.

    Article  CAS  Google Scholar 

  67. G. Liu, L. Wang, Y. Hu, C. Sun, H. Leng, Q. Li, C. Wu, J. Alloy. Compd. 881 (2021) 160644.

    Article  CAS  Google Scholar 

  68. Y.H. Zhang, Y.Q. Li, H.W. Shang, Z.M. Yuan, Y. Cai, Y. Qi, D.L. Zhao, Int. J. Hydrogen Energy 42 (2017) 22379–22387.

    Article  CAS  Google Scholar 

  69. A. Montone, J. Grbovicnovakovic, M. Vittoriantisari, A. Bassetti, E. Bonetti, A. Fiorini, L. Pasquini, L. Mirenghi, P. Rotolo, Int. J. Hydrogen Energy 32 (2007) 2926–2934.

    Article  CAS  Google Scholar 

  70. Y. Shirai, H. Araki, T. Mori, W. Nakamura, K. Sakaki, J. Alloy. Compd. 330–332 (2002) 125–131.

    Article  Google Scholar 

  71. H. Yong, X. Wei, Y. Wang, S. Guo, Z. Yuan, Y. Qi, D. Zhao, Y. Zhang, J. Phys. Chem. Solids 144 (2020) 109516.

    Article  CAS  Google Scholar 

  72. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Scripta Mater. 56 (2007) 841–846.

    Article  CAS  Google Scholar 

  73. M. Pozzo, D. Alfè, Int. J. Hydrogen Energy 34 (2009) 1922–1930.

    Article  ADS  CAS  Google Scholar 

  74. X. Zhao, L. Ma, Int. J. Hydrogen Energy 34 (2009) 4788–4796.

    Article  CAS  Google Scholar 

  75. T. Sadhasivam, M. Sterlin Leo Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.

    Article  CAS  Google Scholar 

  76. N. Cui, J.L. Luo, Int. J. Hydrogen Energy 24 (1999) 37–42.

    Article  CAS  Google Scholar 

  77. G. Friedlmeier, M. Groll, J. Alloy. Compd. 253–254 (1997) 550–555.

    Article  Google Scholar 

  78. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 32 (2007) 1121–1140.

    Article  CAS  Google Scholar 

  79. A. Krozer, B. Kasemo, J. Phys. Condens. Matter 1 (1989) 1533–1538.

    Article  ADS  CAS  Google Scholar 

  80. I.P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 35 (2010) 5133–5144.

    Article  CAS  Google Scholar 

  81. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloy. Compd. 288 (1999) 217–225.

    Article  CAS  Google Scholar 

  82. P. Rizo-Acosta, F. Cuevas, M. Latroche, Int. J. Hydrogen Energy 43 (2018) 16774–16781.

    Article  CAS  Google Scholar 

  83. M. Daryani, A. Simchi, M. Sadati, H.M. Hosseini, H. Targholizadeh, M. Khakbiz, Int. J. Hydrogen Energy 39 (2014) 21007–21014.

    Article  CAS  Google Scholar 

  84. S. Long, J. Zou, X. Chen, X. Zeng, W. Ding, J. Alloy. Compd. 615 (2014) S684–S688.

    Article  CAS  Google Scholar 

  85. S. Dal Toè, S.L. Russo, A. Maddalena, G. Principi, A. Saber, S. Sartori, T. Spataru, Mater. Sci. Eng. B 108 (2004) 24–27.

    Article  Google Scholar 

  86. D. Pukazhselvan, M.S.L. Hudson, A.S.K. Sinha, O.N. Srivastava, Energy 35 (2010) 5037–5042.

    Article  CAS  Google Scholar 

  87. A. Trovarelli, Catal. Rev. 38 (1996) 439–520.

    Article  CAS  Google Scholar 

  88. J. Wang, Y. Li, T. Liu, D. Peng, S. Han, J. Rare Earths 36 (2018) 739–744.

    Article  Google Scholar 

  89. J. Li, L. Xie, T. Zhang, L. Song, Int. J. Hydrogen Energy 43 (2018) 8404–8414.

    Article  CAS  Google Scholar 

  90. X.J. Hou, R. Hu, T.B. Zhang, H.H. Kou, W.J. Song, J.S. Li, Int. J. Hydrogen Energy 39 (2014) 19672–19681.

    Article  CAS  Google Scholar 

  91. R.R. Shahi, A. Bhatanagar, S.K. Pandey, V. Shukla, T.P. Yadav, M.A. Shaz, O.N. Srivastava, Int. J. Hydrogen Energy 40 (2015) 11506–11513.

    Article  CAS  Google Scholar 

  92. N.S. Mustafa, M. Ismail, Int. J. Hydrogen Energy 39 (2014) 15563–15569.

    Article  CAS  Google Scholar 

  93. T. Czujko, R.A. Varin, C. Chiu, Z. Wronski, J. Alloy. Compd. 414 (2006) 240–247.

    Article  CAS  Google Scholar 

  94. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

    Article  CAS  Google Scholar 

  95. N. Xing, Y. Wu, W. Han, S.X. Zhou, Prog. Nat. Sci. 20 (2010) 49–53.

    Article  Google Scholar 

  96. H. Wu, J. Du, F. Cai, F. Xu, W. Wei, J. Guo, Z. Lan, Int. J. Hydrogen Energy 43 (2018) 14578–14583.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51871125, 51761032, 51901105 and 52001005), Major Science and Technology Innovation Projects in Shandong Province (2019JZZY010320), Natural Science Foundation of Inner Mongolia, China (2019BS05005) and Inner Mongolia University of Science and Technology Innovation Fund (2019QDL-B11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-huan Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, X., Li, J. et al. Hydrogen storage thermodynamics and kinetics of as-cast Ce–Mg–Ni-based alloy. J. Iron Steel Res. Int. 31, 752–766 (2024). https://doi.org/10.1007/s42243-023-01119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01119-9

Keywords

Navigation