Skip to main content
Log in

Numerical simulation of fluid flow and free surface fluctuations during wheel and belt casting process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The unstable fluid flow and severe free surface fluctuations in the wheel and belt caster can affect the quality of the cast bar. The lower level height tends to entrap inclusions in the molten metal. On the other hand, the higher level height makes the production process more dangerous due to the overflow of high temperature fluid from the mold. A computational model of the molten metal pouring process was established. The transient fluid flow and free surface fluctuations behavior were calculated using the three-dimensional large eddy simulation model and the volume of fluid model. The results show that the flow velocity of the main jet gradually decreases under the influence of the low kinetic energy fluid in the mold. There is an obvious oscillation in the tail of the jet, while the flow field is asymmetric in space. The jet is closer to the inside radius side due to the Coanda effect, and there is a recirculation zone on the inside radius and the outside radius respectively, according to the 10 s time-averaged results. Compared with the industrial observation and simulation results, the shape of the free surface is a wave that varies with time. In addition, the free surface height is lowest and the flow velocity is highest in the region near the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Szekely, R.T. Yadoya, Metall. Trans. 4 (1973) 1379–1388.

    Article  Google Scholar 

  2. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, M.B. Assar, ISIJ Int. 41 (2001) 1262–1271.

    Article  Google Scholar 

  3. R. Chaudhary, A.F. Shinn, S.P. Vanka, B.G. Thomas, Comput. Fluids 51 (2011) 100–114.

    Article  MathSciNet  Google Scholar 

  4. P. Ramírez-López, L.G. Demedices, O. Dávila, R. Sánchez-Pérez, R.D. Morales, Metall. Mater. Trans. B 36 (2005) 787–800.

    Article  Google Scholar 

  5. Q. Yuan, B. Zhao, S.P. Vanka, B.G. Thomas, Steel Res. Int. 76 (2005) 33–43.

    Article  Google Scholar 

  6. X.F. Liu, J.Y. Zhang, Q.J. Zhai, Q. Li, Ironmak. Steelmak. 34 (2007) 501–505.

    Article  Google Scholar 

  7. T. Zhang, J. Yang, G.J. Xu, H.J. Liu, J.J. Zhou, W. Qin, Int. J. Miner. Metall. Mater. 28 (2021) 238–248.

    Article  Google Scholar 

  8. S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.

    Book  Google Scholar 

  9. R. Chaudhary, C. Ji, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 42 (2011) 987–1007.

    Article  Google Scholar 

  10. Z. Liu, B. Li, Metall. Mater. Trans. B 48 (2017) 1833–1849.

    Article  Google Scholar 

  11. Q. Yuan, B.G. Thomas, S.P. Vanka. Metall. Mater. Trans. B 35 (2004) 685–702.

    Article  Google Scholar 

  12. Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, B.G. Thomas, Metall. Mater. Trans. B 35 (2004) 967–982.

    Article  Google Scholar 

  13. B. Zhao, B.G. Thomas, S.P. Vanka, R.J. O’Malley, Metall. Mater. Trans. B 36 (2005) 801–823.

    Article  Google Scholar 

  14. R. Liu, W. Ji, J. Li, H. Shen, B. Liu, Steel Res. Int. 79 (2008) 626–631.

    Article  Google Scholar 

  15. Z. Liu, B. Li, F. Tsukihashi, ISIJ Int. 55 (2015) 805–813.

    Article  Google Scholar 

  16. S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 47 (2016) 3080–3098.

    Article  Google Scholar 

  17. Z.Q. Liu, B.K. Li, M.F. Jiang, F. Tsukihashi, ISIJ Int. 53 (2013) 484–492.

    Article  Google Scholar 

  18. Z. Liu, B. Li, M. Jiang, Metall. Mater. Trans. B 45 (2014) 675–697.

    Article  Google Scholar 

  19. Z. Liu, A. Vakhrushev, M. Wu, A. Kharicha, A. Ludwig, B. Li, Metall. Mater. Trans. B 50 (2019) 543–554.

    Article  Google Scholar 

  20. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39 (1981) 201–225.

    Article  Google Scholar 

  21. Y. Wang, L. Zhang, ISIJ Int. 50 (2010) 1777–1782.

    Article  Google Scholar 

  22. H.Q. Yu, M.Y. Zhu, J. Wang, J. Iron Steel Res. Int. 17 (2010) No. 4, 5–11.

    Article  Google Scholar 

  23. A. Asad, C. Kratzsch, R. Schwarze, Steel Res. Int. 87 (2016) 181–190.

    Article  Google Scholar 

  24. J.H. Lee, S. Han, H.J. Cho, I.S. Park, Metall. Mater. Trans. B 52 (2021) 178–189.

    Article  Google Scholar 

  25. V. Cedillo, R.D. Morales, Ironmak. Steelmak. 45 (2018) 204–214.

    Article  Google Scholar 

  26. S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 50 (2019) 52–76.

    Article  Google Scholar 

  27. W. Chen, Y. Ren, L. Zhang, P.R. Scheller, JOM 71 (2019) 1158–1168.

    Article  Google Scholar 

  28. W. Chen, Y. Ren, L. Zhang, Steel Res. Int. 90 (2019) 1800287.

    Article  Google Scholar 

  29. W. Chen, L. Zhang, Q. Ren, Y. Ren, W. Yang, Metall. Mater. Trans. B 53 (2022) 1446–1461.

    Article  Google Scholar 

  30. T. Iida, R. Guthire, The physical properties of liquid metals, Clarendon Press, Oxford, UK, 1988.

    Google Scholar 

  31. M.M. Aboutalebi, F. Lapointe, J. D’amours, M.M. Isac, R.I.L. Guthrie, JOM 70 (2018) 2088–2095.

    Article  Google Scholar 

  32. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100 (1992) 335–354.

    Article  MathSciNet  Google Scholar 

  33. R.I. Issa, J. Comput. Phys. 62 (1986) 40–65.

    Article  MathSciNet  Google Scholar 

  34. F.Z. Kendil, D.V. Danciu, M. Schmidtke, A. Bousbia Salah, D. Lucas, E. Krepper, A. Mataoui, Prog. Nucl. Energy 56 (2012) 100–110.

    Article  Google Scholar 

  35. A. Borg, J. Bolinder, L. Fuchs, Exp. Fluids 31 (2001) 140–152.

    Article  Google Scholar 

  36. S.M. Cho, S.H. Kim, B.G. Thomas, ISIJ Int. 54 (2014) 845–854.

    Article  Google Scholar 

  37. P. Liu, J. Gao, Y. Li, Sci. China Ser. E 41 (1998) 357–365.

    Article  Google Scholar 

  38. F. Hartung, E. Häusler, in: The 11th Congress on Large Dams, Madrid, Spain, 1973, pp. 39–56.

  39. B.G. Newman, The deflexion of plane jets by adjacent boundaries—Coanda effect, Pergamon Press, Oxford, UK, 1961.

    Google Scholar 

  40. F.V. Guerra, L. Archer, R.A. Hardin, C. Beckermann, Metall. Mater. Trans. B 52 (2021) 123–137.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Innovative Research Groups Project of the Natural Science Foundation of Hebei Province (No. E2021203011) and Central Government Guides Local Science and Technology Development Fund Projects (No. 206Z1601G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Peng, Y. Numerical simulation of fluid flow and free surface fluctuations during wheel and belt casting process. J. Iron Steel Res. Int. 31, 1117–1126 (2024). https://doi.org/10.1007/s42243-023-01116-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01116-y

Keywords

Navigation