Skip to main content
Log in

Synergistic effects of multiscale TiC and dual-phase structure on tensile properties of particle-reinforced steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The conventional melting methods were used to obtain in situ TiC particle-reinforced dual-phase steel, followed by hot rolling and heat treatment processes. The aim was to investigate the effect of TiC particles on the fracture behavior of dual-phase steel at different annealing temperatures, by analyzing the microstructure and tensile behavior of the multiscale TiC particle-reinforced dual-phase steel. The results showed that TiC particles precipitated in the as-cast microstructure of dual-phase steel were distributed along the grain boundaries. During hot rolling, the grain boundary-like morphology of the micron-sized TiC particles was disrupted, and the particles became more refined and evenly distributed in the matrix. The tensile tests revealed that the strength of the TiC particle-reinforced dual-phase steel increased with increasing martensite content, while the elongation decreased. These results were similar to those of conventional steel. The addition of 1 vol.% multiscale TiC particles improved the strength of the dual-phase steel but did not affect elongation of the steel. Cracks and holes were primarily concentrated around the TiC particles rather than at the interface of martensite and ferrite. The main causes of crack sprouting were TiC particle interface cracking and TiC particle internal fragmentation. Overall, the study demonstrated the potential of multiscale TiC particle-reinforced dual-phase steel as a strong and tough material. The refined distribution of TiC particles in the matrix improved the strength of the material without compromising its elongation. The results also highlighted the importance of careful selection of reinforcement particles to avoid detrimental effects on the fracture behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.O. Rocha, T.M.F. Melo, E.V. Pereloma, D.B. Santos, Mater. Sci. Eng. A 391 (2005) 296–304.

    Article  Google Scholar 

  2. N. Peranio, Y.J. Li, F. Roters, D. Raabe, Mater. Sci. Eng. A 527 (2010) 4161–4168.

    Article  Google Scholar 

  3. X. Zheng, H. Ghassemi-Armaki, A. Srivastava, Mater. Sci. Eng. A 774 (2020) 138924.

    Article  Google Scholar 

  4. M. Asadi, B.C. De Cooman, H. Palkowski, Mater. Sci. Eng. A 538 (2012) 42–52.

    Article  Google Scholar 

  5. S. Sun, M. Pugh, Mater. Sci. Eng. A 335 (2002) 298–308.

    Article  Google Scholar 

  6. J. Liao, J.A. Sousa, A.B. Lopes, X. Xue, F. Barlat, A.B. Pereira, Int. J. Plast. 93 (2017) 269–290.

    Article  Google Scholar 

  7. Y.L. Kang, Q.H. Han, X.M. Zhao, M.H. Cai, Mater. Des. 44 (2013) 331–339.

    Article  Google Scholar 

  8. C.N. Li, G. Yuan, F.Q. Ji, D.S. Ren, G.D. Wang, Mater. Sci. Eng. A 665 (2016) 98–107.

    Article  Google Scholar 

  9. J. Wang, W. Li, X. Zhu, L. Zhang, Mater. Sci. Eng. A 832 (2022) 142424.

    Article  Google Scholar 

  10. K.J. Kim, C.G. Lee, S. Lee, Scripta Mater. 38 (1997) 27–32.

    Article  Google Scholar 

  11. A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Mater. Trans. A 30 (1999) 1193–1202.

    Article  Google Scholar 

  12. D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44 (2009) 2957–2965.

    Article  Google Scholar 

  13. H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, Mater. Sci. Eng. A 680 (2017) 197–202.

    Article  Google Scholar 

  14. H.S. Wang, G. Yuan, J. Kang, G.M. Cao, C.G. Li, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 703 (2017) 486–495.

    Article  Google Scholar 

  15. M.P. Rao, V.S. Sarma, S. Sankaran, Metall. Mater. Trans. A 45 (2014) 5313–5317.

    Article  Google Scholar 

  16. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 604 (2014) 135–141.

    Article  Google Scholar 

  17. Q. Wang, X. Deng, L. Huang, T. Fu, Y. Jia, C. Li, Z. Wang, ISIJ Int. 61 (2021) 985–992.

    Article  Google Scholar 

  18. L. Huang, X. Deng, Y. Jia, C. Li, Z. Wang, Wear 410–411 (2018) 119–126.

    Article  Google Scholar 

  19. L. Huang, X. Deng, C. Li, Y. Jia, Q. Wang, Z. Wang, Wear 434–435 (2019) 202971.

    Article  Google Scholar 

  20. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Acta Mater. 53 (2005) 3125–3134.

    Article  Google Scholar 

  21. H. Xiong, Z. Li, K. Zhou, Ceram. Int. 42 (2016) 6858–6867.

    Article  Google Scholar 

  22. H. Ashrafi, S. Sadeghzade, R. Emadi, M. Shamanian, Steel Res. Int. 88 (2017) 1600213.

    Article  Google Scholar 

  23. H. Mirzadeh, M. Alibeyki, M. Najafi, Metall. Mater. Trans. A 48 (2017) 4565–4573.

    Article  Google Scholar 

  24. F. Jamei, H. Mirzadeh, M. Zamani, Mater. Sci. Eng. A 750 (2019) 125–131.

    Article  Google Scholar 

  25. Q.H. Han, Y.L. Kang, X.M. Zhao, C. Lu, L.F. Gao, J. Iron Steel Res. Int. 18 (2011) No. 5, 52–58.

    Article  Google Scholar 

  26. S. Wang, Y. Li, J. Wang, T. Luo, K. Zheng, Z. Zheng, J. Long, Y. Lin, Mater. Chem. Phys. 287 (2022) 126376.

    Article  Google Scholar 

  27. H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Mater. Sci. Technol. 26 (2010) 421–430.

    Article  Google Scholar 

  28. C.L. Tu, X.D. Sun, J. Li, H.G. Zhu, X.D. Li, J. Iron Steel Res. Int. 28 (2021) 1471–1480.

    Article  Google Scholar 

  29. C. Zhao, H. Zhu, Z. Xie, Intermetallics 140 (2022) 107398.

    Article  Google Scholar 

  30. F. Ma, J. Zhou, P. Liu, W. Li, X. Liu, D. Pan, W. Lu, D. Zhang, L. Wu, X. Wei, Mater. Charact. 127 (2017) 27–34.

    Article  Google Scholar 

  31. Z. Zhang, D. Chen, Scripta Mater. 54 (2006) 1321–1326.

    Article  Google Scholar 

  32. J.H. Zhou, Y.F. Shen, Y.Y. Hong, W.Y. Xue, R.D.K. Misra, Mater. Sci. Eng. A 769 (2020) 138471.

    Article  Google Scholar 

  33. T. Lu, C. Chen, P. Li, C. Zhang, W. Han, Y. Zhou, C. Suryanarayana, Z. Guo, Mater. Sci. Eng. A 799 (2021) 140161.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Basic Research Program, China (No. 2022YFB3705300), National Natural Science Foundation of China (Nos. 52274380, 51874089, and U1960112), and LiaoNing Revitalization Talents Program (XLYC2007030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-tao Deng or Zhao-dong Wang.

Ethics declarations

Conflict of interest

Xiang-tao Deng is the youth editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. The authors declare there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Deng, Xt., Wang, Q. et al. Synergistic effects of multiscale TiC and dual-phase structure on tensile properties of particle-reinforced steel. J. Iron Steel Res. Int. 31, 1232–1245 (2024). https://doi.org/10.1007/s42243-023-01110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01110-4

Keywords

Navigation