Skip to main content
Log in

An analytical model of hot rolling force for a thick plate by combining globally optimal approximation yield criterion and egg-circular velocity field

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

For the sake of solving the problem that it is difficult to be integrated for the Mises specific plastic power due to its nonlinearity, a new linear criterion, named the globally optimal approximation criterion, is constructed by the polygonal approximation to the Mises circle. The new criterion is proved to be the linear function of the principal stress components σ1, σ2 and σ3 and the trajectory of it on the π-plane is a non-equiangular but equilateral dodecagon intersecting the Mises circle. The theoretical results of the current criterion described by the Lode stress parameters are in excellent accordance with the experimental results. Meanwhile, according to the trend that the metallic flow velocity between rollers aggrandizes gradually from the inlet to the outlet during the hot rolling of a thick plate, a biomimetic velocity field is proposed in which the horizontal velocity component fits the egg-circular curve distribution. The velocity field and its simulated results agree quite well. Subsequently, using the determined linear criterion, energy analysis of the constructed velocity field is utilized to obtain the interior deformation power, while the vector decomposition approach is utilized to obtain the frictional power and shear power. On this basis, the overall power is obtained and the analytical solutions are generated for the rolling torque, rolling force and the coefficient of the stress state under different egg curves by minimizing the neutral angle. Furthermore, the parameter optimization of the characteristic parameter ρ which affects the slope of the egg-circular curve is carried out and the best egg-circular curve which can minimize the energy consumption is determined. The best agreement between the theoretical and observed values of rolling force and rolling torque is under this curve, and the mean relative errors of the rolling torque and rolling force are no more than 2.93%, while the maximum error is no more than 8.35%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Tresca, Comptes-rendus de l’académie des sciences 59 (1864) 754–758.

    Google Scholar 

  2. R.V. Mises, N. von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913 (1913) 582–592.

    Google Scholar 

  3. R.V. Mises, Z. Angew. Math. Mech. 8 (1928) 161–185.

    Google Scholar 

  4. M.H. Yu, L.N. He, L.Y. Song, Sci. Sin. 28 (1985) 1174–1183.

    Google Scholar 

  5. X.R. Hu, M.H. Yu, Engineering Mechanics 23 (2006) No. 4, 6–11.

    CAS  Google Scholar 

  6. L. Deng, S.H. Zhang, S.H. Qin, X.Y. Liu, Chinese Journal of Computational Mechanics 6 (2021) 763–769.

    Google Scholar 

  7. X.R. Jiang, S.H. Zhang, C.J. Wang, Y.X. Li, W.H. Tian, J. Harbin Inst. Technol. 52 (2020) No. 56, 41–48.

    CAS  Google Scholar 

  8. S.E. Lundberg, T. Gustafsson, J. Mater. Eng. Perform. 2 (1993) 873–879.

    Article  Google Scholar 

  9. Y.M. Hwang, H.H. Hsu, J. Mater. Process. Technol. 88 (1999) 97–104.

    Article  Google Scholar 

  10. J.L. Zhang, Z.S. Cui, J. Iron Steel Res. Int. 18 (2011) No. 7, 20–27.

    Article  Google Scholar 

  11. J.Z. Cao, D.W. Zhao, S.H. Zhang, W. Peng, S.Z. Chen, D.H. Zhang, J. Iron Steel Res. Int. 21 (2014) 295–299.

    Article  Google Scholar 

  12. S. Seuren, J. Seitz, A. Krämer, M. Bambach, G. Hirt, Prod. Eng. 8 (2014) 17–24.

    Article  Google Scholar 

  13. G.S. Ma, Y.M. Liu, W. Peng, F.C. Yin, J.G. Ding, D.W. Zhao, H.S. Di, D.H. Zhang, J. Braz. Soc. Mech. Sci. Eng. 39 (2017) 523–530.

    Article  Google Scholar 

  14. D.H. Zhang, Y.M. Liu, J. Sun, D.W. Zhao, Int. J. Adv. Manuf. Technol. 84 (2016) 843–850.

    Google Scholar 

  15. Y.F. Zhang, H.S. Di, X. Li, D.W. Zhao, D.H. Zhang, Journal of Plasticity Engineering 27 (2020) 153–158.

    Google Scholar 

  16. Y.Y. Wei, T. Zhen, J.B. Huang, H. Li, P. Wang, L.Y. Jiang, Heavy Machinery (2021) No. 1, 52–56.

    Google Scholar 

  17. L.Y. Jiang, T. Zhen, J.B. Huang, Y.Y. Wei, Journal of Plasticity Engineering 28 (2021) 249–256.

    Google Scholar 

  18. Z.H. Wang, Y.M. Liu, T. Wang, J. Sun, D.H. Zhang, Iron and Steel 57 (2022) No. 9, 95–102.

    Google Scholar 

  19. L. Deng, S.H. Zhang, J. Harbin Inst. Technol. 53 (2021) No. 8, 116–124.

    Google Scholar 

  20. S.H. Zhang, S.W. Gao, G.J. Wu, J. Cao, D.W. Zhao, J. Manuf. Process. 28 (2017) 243–252.

    Article  Google Scholar 

  21. W. Lode, Z. Phys. 36 (1926) 913–939.

    Article  ADS  CAS  Google Scholar 

  22. J.M. Lessells, C.W. MacGregor, J. Frankl. Inst. 230 (1940) 163–181.

    Article  Google Scholar 

  23. W.A. Maxey, in: Proceedings of the Fifth Symposium on Line Pipe Research, Houston, Texas, USA, 1974, pp. 20–22.

  24. P.M. Naghdi, F. Essenburg, W. Koff, J. Appl. Mech. 25 (1958) 201–209.

    Article  ADS  Google Scholar 

  25. Z.L. Liu, Research on nonlinear stability of egg circular curved single-layer reticulated shell, Hunan University, Changsha, China, 2018.

    Google Scholar 

  26. S.H. Zhang, L. Deng, W.H. Tian, L.Z. Che, Y. Li, Comput. Math. Appl. 109 (2022) 58–73.

    Article  MathSciNet  Google Scholar 

  27. J.N. Harris, Mechanical working of metals: theory and practice, Elsevier, Amsterdam, USA, 2014.

    Google Scholar 

  28. S.H. Zhang, W.H. Tian, L. Deng, J. Braz. Soc. Mech. Sci. Eng. 43 (2021) 1–11.

    Article  Google Scholar 

  29. S.H. Zhang, Linearization of yield criterion and its engineering applications, Metallurgical Industry Press, Beijing, China, 2018.

    Google Scholar 

Download references

Acknowledgments

The authors would like to extend their thanks to the financial support from the National Natural Science Foundation of China (Grant Nos. 52074187, U1960105 and 52274388) and the Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University, China (Grant No. 202210285158Y). The valuable suggestions from reviewers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-hu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sh., Zhang, Y., Tian, Wh. et al. An analytical model of hot rolling force for a thick plate by combining globally optimal approximation yield criterion and egg-circular velocity field. J. Iron Steel Res. Int. 31, 647–659 (2024). https://doi.org/10.1007/s42243-023-01099-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01099-w

Keywords

Navigation