Skip to main content
Log in

Fabricating functionally graded Fe–Cr–Co permanent magnetic alloys via laser powder bed fusion

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Laser powder bed fusion (LPBF) in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties. Functionally graded Fe–Cr–Co permanent magnetic alloys were fabricated by LPBF and in-situ alloying mixed powders of Fe, Cr, and Co elements. The effects of different Fe, Cr and Co contents on the microstructure, magnetic properties and hardness of Fe–Cr–Co alloys prepared by LPBF were studied. The as-built Fe–Cr–Co alloys present a single body-centered-cubic phase and have a homogeneous distribution of elements. The mechanical properties and magnetic properties of the compositionally graded sample show a gradient variation. With the increase in Cr content, the Vickers hardness of the sample increases, and the saturation magnetization of the sample decreases. The optimal magnetic properties in an isotropic state are given as coercivity \({H}_{\text{cB}}\)= 21.65 kA/m, remanence \({B}_{\text{r}}\)= 0.70 T and energy product \({\left(BH\right)}_{\text{max}}\)= 5.35 kJ/m3, which are comparable to or higher than the reported magnetic properties in an isotropic state prepared by traditional powder metallurgy. LPBF in-situ alloying technology has the potential to further explore Fe–Cr–Co magnetic materials, such as those consisting of multiple or more constituent elements, and to maximize the compositional flexibility of magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Jin, G. Chin, IEEE Trans. Magn. 23 (1987) 3187–3192.

    Article  Google Scholar 

  2. S. Sugimoto, M. Okada, M. Homma, J. Appl. Phys. 63 (1988) 3707–3709.

    Article  CAS  Google Scholar 

  3. L. Zhen, X.Y. Sun, C.Y. Xu, R.S. Gao, R.G. Xu, L.C. Qin, Trans. Nonferrous Met. Soc. China 17 (2007) 346–350.

    Article  CAS  Google Scholar 

  4. O.A. Ushakova, E.H. Dinislamova, M.V. Gorshenkov, D.G. Zhukov, J. Alloy. Compd. 586 (2014) S291–S293.

    Article  CAS  Google Scholar 

  5. X.H. Han, Y. Li, Y. Zhao, X. Chi, C. Zhang, L. Bian, J.B. Sun, Y. Zhang, J. Alloy. Compd. 731 (2018) 10–17.

    Article  CAS  Google Scholar 

  6. H. Kaneko, M. Homma, K. Nakamura, AIP Conf. Proc. 5 (1972) 1088–1092.

  7. B.O. Mukhamedov, A.V. Ponomareva, I.A. Abrikosov, J. Alloy. Compd. 695 (2017) 250–256.

    Article  CAS  Google Scholar 

  8. X.H. Han, S.J. Bu, X. Wu, J.B. Sun, Y. Zhang, C.X. Cui, J. Alloy. Compd. 694 (2017) 103–110.

    Article  CAS  Google Scholar 

  9. M. Altafi, A. Ghasemi, E.M. Sharifi, J. Magn. Magn. Mater. 491 (2019) 165537.

    Article  CAS  Google Scholar 

  10. M. Altafi, E. Mohammad Sharifi, A. Ghasemi, J. Magn. Magn. Mater. 507 (2020) 166837.

  11. R.A. Rastabi, A. Ghasemi, M. Tavoosi, M. Ramazani, J. Magn. Magn. Mater. 426 (2017) 744–752.

    Article  CAS  Google Scholar 

  12. X.Y. Sun, C.Y. Xu, L. Zhen, L.X. Lv, L. Yang, J. Magn. Magn. Mater. 312 (2007) 342–346.

    Article  CAS  Google Scholar 

  13. A.S. Ustyukhin, A.B. Ankudinov, V.A. Zelenskii, I.M. Milyaev, M.I. Alymov, Doklady Phys. Chem. 476 (2017) 193–196.

    Article  CAS  Google Scholar 

  14. A.S. Ustyukhin, A.B. Ankudinov, V.A. Zelensky, M.I. Alymov, I.M. Milyaev, T.A. Vompe, J. Alloy. Compd. 902 (2022) 163754.

    Article  CAS  Google Scholar 

  15. Z. Xiang, L. Zhang, Y. Xin, B. An, R. Niu, M. Mardani, T. Siegrist, J. Lu, R.E. Goddard, T. Man, E. Wang, K. Han, Mater. Des. 199 (2021) 109383.

    Article  CAS  Google Scholar 

  16. E. Mohseni Zonoozi, A. Kianvash, Appl. Phys. A 126 (2020) 1–9.

  17. E.V. Belozerov, N.V. Mushnikov, G.V. Ivanova, N.N. Shchegoleva, V.V. Serikov, N.M. Kleinerman, A.V. Vershinin, M.A. Uimin, Phys. Metals Metallogr. 113 (2012) 319–325.

    Article  Google Scholar 

  18. D.C. Jiles, Acta Mater. 51 (2003) 5907–5939.

    Article  CAS  Google Scholar 

  19. G. Liu, X. Zhang, X. Chen, Y. He, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen, P. Wang, S. Yi, L. Wan, Z. Mao, Z. Chen, X. Wang, Z. Cao, J. Lu, Mater. Sci. Eng. R Rep. 145 (2021) 100596.

    Article  Google Scholar 

  20. E.A. Périgo, J. Jacimovic, F. García Ferré, L.M. Scherf, Addit. Manuf. 30 (2019) 100870.

  21. A. Reichardt, A.A. Shapiro, R. Otis, R.P. Dillon, J.P. Borgonia, B.W. McEnerney, P. Hosemann, A.M. Beese, Int. Mater. Rev. 66 (2021) 1–29.

    Article  CAS  Google Scholar 

  22. T. Borkar, R. Conteri, X. Chen, R.V. Ramanujan, R. Banerjee, Mater. Manuf. Process. 32 (2017) 1581–1587.

    Article  CAS  Google Scholar 

  23. V. Chaudhary, N.M. Sai Kiran Kumar Yadav, S.A. Mantri, S. Dasari, A. Jagetia, R.V. Ramanujan, R. Banerjee, J. Alloy. Compd. 823 (2020) 153817.

  24. M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloy. Compd. 872 (2021) 159567.

    Article  CAS  Google Scholar 

  25. Y. He, H. Zhang, H. Su, P. Shen, Y. Hou, D. Zhou, Metals 12 (2022) 1634.

    Article  CAS  Google Scholar 

  26. H. Zhang, H. Su, Y. Hou, X. Wang, Y. He, F. Li, Mater. Lett. 330 (2023) 133255.

    Article  CAS  Google Scholar 

  27. T.A. Vompe, I.M. Milyaev, IOP Conf. Ser. Mater. Sci. Eng. 848 (2020) 012096.

    CAS  Google Scholar 

  28. S. Liu, C.M. Grohol, Y.C. Shin, J. Alloy. Compd. 916 (2022) 165469.

    Article  CAS  Google Scholar 

  29. Y. Hou, H. Su, H. Zhang, X. Wang, C. Wang, Metals 11 (2021) 942.

    Article  CAS  Google Scholar 

  30. X. Wang, L.N. Carter, B. Pang, M.M. Attallah, M.H. Loretto, Acta Mater. 128 (2017) 87–95.

    Article  CAS  Google Scholar 

  31. M. Ma, Z. Wang, X. Zeng, Mater. Sci. Eng. A 685 (2017) 265–273.

    Article  CAS  Google Scholar 

  32. R.A. Rastabi, A. Ghasemi, M. Tavoosi, T. Sodaee, J. Magn. Magn. Mater. 416 (2016) 174–180.

    Article  CAS  Google Scholar 

  33. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd Ed., Wiley-IEEE press, New Jersey, USA, 2009.

    Google Scholar 

  34. Z. Ahmad, A.U. Haq, S.W. Husain, A. Ali, T. Abbas, J. Magn. Magn. Mater. 257 (2003) 397–402.

    Article  CAS  Google Scholar 

  35. X. Wu, S.J. Bu, X.H. Han, C. Zhang, J.B. Sun, Y. Zhang, Y.F. Pan, IEEE Trans. Magn. 53 (2017) 1–8.

    CAS  Google Scholar 

  36. S. Tao, Z. Ahmad, I.U. Khan, P. Zhang, X. Zheng, J. Magn. Magn. Mater. 469 (2019) 342–348.

    Article  CAS  Google Scholar 

  37. Z. Ahmad, A.U. Haq, M. Yan, Z. Iqbal, J. Magn. Magn. Mater. 324 (2012) 2355–2359.

    Article  CAS  Google Scholar 

  38. L.X. Lv, L. Zhen, C.Y. Xu, X.Y. Sun, J. Magn. Magn. Mater. 322 (2010) 987–995.

    Article  CAS  Google Scholar 

  39. H. Iwaizako, M. Okugawa, K. Saito, Y. Koizumi, A. Chiba, Y. Tachiya, M. Ohnuma, K. Kuritani, ISIJ Int. 62 (2022) 1268–1274.

    Article  CAS  Google Scholar 

  40. T. Koyama, H. Onodera, Met. Mater. Int. 10 (2004) 321–326.

    Article  CAS  Google Scholar 

  41. A.F. Guillermet, High Temp. High Pressures 19 (1987) 477–499.

    Google Scholar 

  42. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Acta Mater. 50 (2002) 2173–2184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Key Research and Development Program of China (Grant No. 2021YFB3702500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Su.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Yz., Hou, Yq., Shen, P. et al. Fabricating functionally graded Fe–Cr–Co permanent magnetic alloys via laser powder bed fusion. J. Iron Steel Res. Int. 31, 729–737 (2024). https://doi.org/10.1007/s42243-023-01088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01088-z

Keywords

Navigation