Skip to main content
Log in

Effect of solute Ce, Mn, and Si on mechanical properties of silicon steel: insights from DFT calculations

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence of solute Ce, Mn, and Si on the mechanical properties of silicon steel was investigated by first-principles calculation. Ce, Mn, and Si can all be solubilized in Fe matrix. Ce significantly reduces the incompressibility and rigidity of the system but also significantly improves the toughness and machinability. The effect of Mn on mechanical properties of the system is not obvious. Si has a significant effect on the improvement in incompressibility and rigidity but a limited effect on the improvement in toughness and machinability. The metallic bond strength of Fe–Ce, Fe–Mn, and Fe–Si doped systems is weaker than that of the pure Fe system, which can be used to explain the reduction in the incompressibility and rigidity of these doped systems. The relatively high electron cloud density in the doped system may be responsible for the increase in toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.I. Arai, K. Ishiyama, J. Appl. Phys. 64 (1988) 5352–5354.

    Article  CAS  Google Scholar 

  2. W.X. Dou, G. Yuan, M.F. Lan, Y.X. Zhang, M.Y. Zhu, Steel Res. Int. 91 (2020) 1900286.

    Article  CAS  Google Scholar 

  3. G. Ouyang, B. Jensen, W. Tang, J. Schlagel, B. Hilliard, C. Pan, B. Cui, K. Dennis, D. Jiles, T. Monson, I. Anderson, M.J. Kramer, J. Cui, Acta Mater. 201 (2020) 209–216.

    Article  CAS  Google Scholar 

  4. Y. Zhang, X. Lu, G. Yuan, Y. Wang, F. Fang, X. Zhang, G. Wang, J. Magn. Magn. Mater. 499 (2020) 166256.

    Article  CAS  Google Scholar 

  5. Z.L. Zheng, F. Ye, Y.F. Liang, X.F. Ding, J.P. Lin, G.L. Chen, Intermetallics 19 (2011) 165–168.

    Article  CAS  Google Scholar 

  6. G. Ouyang, B. Jensen, W. Tang, K. Dennis, C. Macziewski, S. Thimmaiah, Y. Liang, J. Cui, AIP Adv. 8 (2018) 056111.

    Article  Google Scholar 

  7. H. Haiji, K. Okada, T. Hiratani, M. Abe, M. Ninomiya, J. Magn. Magn. Mater. 160 (1996) 109–114.

    Article  CAS  Google Scholar 

  8. H.T. Jiao, W.Z. Qiu, W. Xiong, Y.X. Zhang, F. Fang, G.M. Cao, C.G. Li, Y.M. Yu, Y.B. Xu, Procedia Eng. 207 (2017) 2078–2082.

    Article  CAS  Google Scholar 

  9. H.T. Jiao, Y.B. Xu, H.J. Xu, Y.X. Zhang, W. Xiong, R.D.K. Misra, G.M. Cao, J.P. Li, J.X. Jiang, J. Magn. Magn. Mater. 462 (2018) 205–215.

    Article  CAS  Google Scholar 

  10. C.Y. Zhu, Y.K. Bao, Y. Wang, J.H. Ma, G.Q. Li, Mater. Rep. 35 (2021) 23089–23096.

    Google Scholar 

  11. I. Tanaka, H. Yashiki, S. Iwamoto, H. Takamaru, T. Nakayama, X.L. Li, J. Iron Steel Res. 23 (2011) No. 6, 63–66.

  12. J. Gong, H.W. Luo, J. Mater. Eng. 43 (2015) 102–112.

    CAS  Google Scholar 

  13. J. Wang, P. Yang, W. Mao, Steel Res. Int. 90 (2019) 1800320.

    Article  Google Scholar 

  14. C.Y. Zhu, L.Y. Huang, X.Y. Luo, Y.L. Liu, Y. Wang, G.Q. Li, J. Iron Steel Res. 32 (2020) 117–128.

    Google Scholar 

  15. H. Wang, L. Xiong, L. Zhang, Y. Wang, Y. Shu, Y. Zhou, Metall. Mater. Trans. B 48 (2017) 2849–2858.

    Article  CAS  Google Scholar 

  16. C. Yang, Y. Luan, D. Li, Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.

    Article  CAS  Google Scholar 

  17. W. Wei, K. Wu, X. Zhang, J. Liu, P. Qiu, L. Cheng, J. Mater. Res. Technol. 9 (2020) 1412–1424.

    Article  CAS  Google Scholar 

  18. R.W.G. Wyckoff, Crystal structures, John Wiley and Sons, New York, USA, 1963.

    Google Scholar 

  19. Y. Liu, Y. Huang, Z. Xiao, C. Yang, X. Reng, Int. J. Mod. Phys. B 30 (2016) 1650085.

    Article  CAS  Google Scholar 

  20. N. Sandberg, K.O.E. Henriksson, J. Wallenius, Phys. Rev. B 78 (2008) 094110.

    Article  Google Scholar 

  21. D.C. Sorescu, Catal. Today 105 (2005) 44–65.

    Article  CAS  Google Scholar 

  22. H.C. Herper, E. Hoffmann, P. Entel, Phys. Rev. B 60 (1999) 3839–3848.

    Article  CAS  Google Scholar 

  23. C. Kittel, Introduction to solid state physics, Hoboken, Wiley, USA, 1996.

    Google Scholar 

  24. Y. You, J. Yan, M. Yan, C. Zhang, H. Chen, Y. Wang, Y. Zhang, C. Wang, J. Alloy. Compd. 688 (2016) 261–269.

    Article  CAS  Google Scholar 

  25. Y. Yang, X.Z. Dai, X.R. Yang, S.H. Zhang, D.Y. Li, Acta Mater. 196 (2020) 347–354.

    Article  CAS  Google Scholar 

  26. B.R. Sahu, Mater. Sci. Eng. B 49 (1997) 74–78.

    Article  Google Scholar 

  27. C.T. Zhou, B. Xiao, J. Feng, J.C. Chen, R. Zhou, J.D. Xing, Y.F. Li, Phys. B 404 (2009) 1701–1704.

    Article  CAS  Google Scholar 

  28. X. Liu, J. Yang, C. Cai, A. Li, X. Lei, C. Yang, Steel Res. Int. 92 (2021) 2100053.

    Article  CAS  Google Scholar 

  29. O.H. Nielsen, R.M. Martin, Phys. Rev. Lett. 50 (1983) 697–700.

    Article  CAS  Google Scholar 

  30. M. Özduran, A. Candan, S. Akbudak, A.K. Kushwaha, A. İyigör, J. Alloy. Compd. 845 (2020) 155499.

    Article  Google Scholar 

  31. R. Hill, J. Mech. Phys. Solids 11 (1963) 357–372.

    Article  Google Scholar 

  32. N. Kulo, S. He, W. Ecker, R. Pippan, T. Antretter, V.I. Razumovskiy, Intermetallics 114 (2019) 106604.

    Article  CAS  Google Scholar 

  33. Y. Zheng, F. Wang, T. Ai, C. Li, J. Alloy. Compd. 710 (2017) 581–588.

    Article  CAS  Google Scholar 

  34. S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954) 823–843.

  35. Z. Sun, D. Music, R. Ahuja, J.M. Schneider, Phys. Rev. B 71 (2005) 193402.

    Article  Google Scholar 

  36. C.C. Yuan, C. Deng, H.P. Zhang, M.Z. Li, B.L. Shen, Intermetallics 112 (2019) 106501.

    Article  CAS  Google Scholar 

  37. G. Lim, K.B. Lee, H.C. Ham, J. Phys. Chem. C 120 (2016) 8087–8095.

    Article  CAS  Google Scholar 

  38. M.J. Wang, C.F. Li, P. Wen, F.C. Zhang, Y. Wang, E.Z. Liu, Acta Phys. Sin. 65 (2016) 037101.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 52204364), China Postdoctoral Science Foundation (No. 2021MD703850), Central Guidance on Local Science and Technology Development Fund Projects of Inner Mongolia Autonomous Region (No. 2022ZY0090), and Basic Scientific Research Business Expenses of Colleges and Universities in Inner Mongolia Autonomous Region (2023QNJS011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-ping Ren or Chang-qiao Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xj., Yang, Jc., Ren, Hp. et al. Effect of solute Ce, Mn, and Si on mechanical properties of silicon steel: insights from DFT calculations. J. Iron Steel Res. Int. 31, 700–709 (2024). https://doi.org/10.1007/s42243-023-01080-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01080-7

Keywords

Navigation