Skip to main content
Log in

Interface interaction between SiO2 and magnetite under high temperature: particle migration and inhibition mechanism

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Silicon is one of the main gangue components in iron ore, usually in the form of quartz and olivine. Numerous studies have shown that SiO2 has a two-sided effect on the consolidation of pellets during high-temperature oxidation roasting of magnetite. However, it is very difficult to capture the structural evolution and migration mechanisms during high-temperature roasting process by existing experimental methods. Therefore, the influence of SiO2 on the consolidation behavior of magnetite was studied through a series of roasting experiments and molecular dynamic simulation. The results show that the consolidation index and particle growth index decrease with the increase in SiO2 content in the particles. At 1573 K, the liquid phase promotes the recrystallization growth of hematite at high temperature. Molecular dynamic study shows that it is difficult for quartz SiO2 to form sintering neck with Fe2O3. When the calcination temperature is higher than 1400 K, the Fe2O3–Fe2SiO4 system produces a considerable sintering neck structure after relaxation. The atomic migration ability of Fe2SiO4 is much higher than that of Fe2O3. The higher atomic migration ability of Fe2SiO4 is the main reason for the formation of the sintering neck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Agrawal, Trans. Indian Inst. Met. 72 (2019) 777–787.

    Article  CAS  Google Scholar 

  2. Y.L. Jin, Z.J. He, C. Wang, Iron and Steel 54 (2019) No. 7, 8–16.

    CAS  Google Scholar 

  3. I.S. Bersenev, V.V. Bragin, A.A. Ugarov, N.T. Efendiev, S.I. Kretov, D.O. Sharkovskii, Y.A. Chesnokov, Steel Transl. 50 (2020) 171–178.

    Article  Google Scholar 

  4. Z.J. Liu, J.Q. Huang, J.L. Zhang, L.L. Niu, Y.Z. Wang, J. Univ. Sci. Technol. Liaoning 44 (2021) 85–91.

    Google Scholar 

  5. Y.W. Yu, C.G. Bai, Z.R. Zhang, F. Wang, D.G. Lv, C. Pan, Ironmak. Steelmak. 36 (2009) 505–508.

    Article  CAS  Google Scholar 

  6. L.W. Cui, H.D. Xia, C. Wang, J.J. Yi, L.H. Kong, J. Chen, Geol. Explor. 48 (2012) 894–905.

    CAS  Google Scholar 

  7. C.E. Loo, W. Leung, ISIJ Int. 43 (2003) 1393–1402.

    Article  CAS  Google Scholar 

  8. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, A.N. Christensen, Metall. Mater. Trans. B 35 (2004) 929–936.

    Article  Google Scholar 

  9. N.A.S. Webster, M.I. Pownceby, R. Pattel, J.R. Manuel, J.A. Kimpton, ISIJ Int. 59 (2019) 1007–1010.

    Article  CAS  Google Scholar 

  10. W.B. Chen, Z.Q. Dong, Y. Jiao, L.L. Liu, X.D. Wang, Crystals 11 (2021) 188.

    Article  CAS  Google Scholar 

  11. Y.Z. Wang, J. Schenk, J.L. Zhang, Z.J. Liu, J. Wang, L.L. Niu, Q. Cheng, Powder Technol. 362 (2020) 517–526.

    Article  CAS  Google Scholar 

  12. C.C. Yang, D.Q. Zhu, J. Pan, B.Z. Zhou, H. Xun, J. Iron Steel Res. Int. 23 (2016) 924–932.

    Article  Google Scholar 

  13. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, Ironmak. Steelmak. 44 (2017) 294–303.

    Article  CAS  Google Scholar 

  14. D.Q. Zhu, C.C. Yang, J. Pan, Q. Zhang, B.J. Shi, F. Zhang, Metall. Mater. Trans. B 47 (2016) 1010–1023.

    Article  CAS  Google Scholar 

  15. N.Y. Li, J.L. Zhang, X.L. Liu, Z.J. Liu, Y.R. Liu, Iron and Steel 52 (2017) No. 7, 14–21.

    Google Scholar 

  16. G.L. Qing, C.D. Wang, E.J. Hou, H.S. Liu, L. Ma, K. Wu, J. Iron Steel Res. 26 (2014) No. 4, 7–12.

    CAS  Google Scholar 

  17. R.R. Wang, J.L. Zhang, Z.J. Liu, Y. Li, C.Y. Xu, Powder Technol. 390 (2021) 496–503.

    Article  CAS  Google Scholar 

  18. H. Guo, X. Jiang, F.M. Shen, H.Y. Zheng, Q.J. Gao, X. Zhang, Metals 9 (2019) 852.

    Article  CAS  Google Scholar 

  19. J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, J.N. Sun, Int. J. Miner. Metall. Mater. 28 (2021) 629–636.

    Article  CAS  Google Scholar 

  20. G.J. Huo, T.L. Tian, N. Wang, Y.R. Li, H. Xu, Multipurpose Utilization of Mineral Resources (2019) No. 4, 59–62.

    Google Scholar 

  21. J. Li, Z.C. Xin, W.X. Liu, A.M. Yang, L.J. Liu, W.Q. Zhang, Sinter. Pelletiz. 42 (2017) No. 4, 23–27.

    CAS  Google Scholar 

  22. Z.Z. Yan, J.G. Lu, Q. Lv, S.H. Zhang, X.J. Liu, Z. Sun, Iron Steel Vanadium Titanium 39 (2018) No. 6, 110–115.

    CAS  Google Scholar 

  23. G.Q. Fu, W. Li, M.S. Chu, M.Y. Zhu, Metall. Mater. Trans. B 51 (2020) 114–123.

    Article  CAS  Google Scholar 

  24. C. Feng, M.S. Chu, J. Tang, Z.G. Liu, Int. J. Miner. Metall. Mater. 25 (2018) 609–622.

    Article  CAS  Google Scholar 

  25. J.N. Sun, X.J. Liu, Z.Z. Yan, J.G. Lu, Q. Lv, Multipurpose Utilization of Mineral Resources (2020) No. 4, 191–195.

    Google Scholar 

  26. S. Plimpton, J. Comput. Phys. 117 (1995) 1–19.

    Article  ADS  CAS  Google Scholar 

  27. M. Wu, L.L. Chang, Y.N. Cui, X.W. Chen, X.B. He, X.H. Qu, J. Univ. Sci. Technol. Beijing 36 (2014) 345–353.

    CAS  Google Scholar 

  28. A.A. Abrahamson, Phys. Rev. 178 (1969) 76–79.

    Article  ADS  CAS  Google Scholar 

  29. A. Erlebach, H.D. Kurland, J. Grabow, F.A. Müller, M. Sierka, Nanoscale 7 (2015) 2960–2969.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Y.Z. Wang, J.L. Zhang, Q. Cheng, Z.J. Liu, Z. Li, Powder Technol. 416 (2023) 118226.

    Article  CAS  Google Scholar 

  31. Y.Z. Wang, J.L. Zhang, H.Q. Jiang, C.Y. Xu, Z.J. Liu, R.S. Xu, Z.H. Chen, Mater. Des. 215 (2022) 110434.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (52204335) for its financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-jian Liu or Yu-bo Tan.

Ethics declarations

Conflict of interest

Zheng-jian Liu is a youth editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yz., Zhang, Jl., Cheng, Q. et al. Interface interaction between SiO2 and magnetite under high temperature: particle migration and inhibition mechanism. J. Iron Steel Res. Int. 31, 561–572 (2024). https://doi.org/10.1007/s42243-023-01078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01078-1

Keywords

Navigation