Skip to main content
Log in

Research progress and intelligent trend of accurate modeling of rolling force in metal sheet

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The rolling force model is the basis for reasonable selection of rolling equipment and optimization of rolling process, and the establishment of an accurate mathematical model as well as doing the corresponding parameter analysis has been the focus of research in this field for many years. Different modeling methods of the rolling force and their research progress were introduced, the main methods of which are the theoretical analysis, the finite element simulation, the artificial neural network modeling, the hybrid modeling of theory and neural network, as well as the hybrid modeling of finite element and neural network. Meanwhile, the application examples of rolling force models in thickness control, strip crown control, and schedule optimization were presented, and an outlook on the new directions of future development was made, including establishing new type of hybrid models, solving the black box problem, and realizing the multi-objective optimization accounting for some special requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.C. Zeng, Research on precision and surface quality of NC incremental sheet metal forming, Zhejiang University of Science and Technology, Hangzhou, China, 2022.

    Google Scholar 

  2. T.V. Karman, Z. Angew. Math. Mech. 5 (1925) 139–141.

    Google Scholar 

  3. E. Orowan, P. I. Mech. Eng. A 150 (1943) 140–167.

    Google Scholar 

  4. R.B. Sims, P. I. Mech. Eng. A 168 (1954) 191–200.

    Google Scholar 

  5. J.J. Park, S.I. Oh, J. Eng. Ind. 112 (1990) 36–46.

    Google Scholar 

  6. N. Kim, S. Kobayashi, T. Altan, Int. J. Mach. Tools Manuf. 31 (1991) 553–563.

    Google Scholar 

  7. S.H. Zhang, G.L. Zhang, J.S. Liu, C.S. Li, R.B. Mei, Finite Elem. Anal. Des. 46 (2010) 1146–1154.

    Google Scholar 

  8. C. Lv, G.D. Wang, X.H. Liu, Z.Y. Jiang, H.T. Zhu, J.G. Yuan, Q. Jie, Iron and Steel 33 (1998) No. 3, 33–35.

    Google Scholar 

  9. Y. Li, W.Z. Liu, Y.K. Sun, Iron and Steel 31 (1996) No. 1, 54–57.

    Google Scholar 

  10. F. Zhang, Y. Zhao, J. Shao, J. Control Sci. Eng. 2016 (2016) 1–9.

    Google Scholar 

  11. H.Y. Wang, J.G. Ding, X. Lu, D.H. Zhang, D.W. Zhao, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231 (2017) 599–615.

  12. Y.G. Li, H.Z. Li, J.M. Yu, Tianjin Metallurgy (2000) No. 4, 32–34.

    Google Scholar 

  13. Y.F. Zhang, H.S. Di, X. Li, D.W. Zhao, D.H. Zhang, J. Plast. Eng. 27 (2020) 153–158.

    Google Scholar 

  14. H. Ford, J.M. Alexander, J. Inst. Met. 92 (1964) 397–404.

    Google Scholar 

  15. S.I. Oh, S. Kobayashi, Int. J. Mech. Sci. 17 (1975) 293–305.

    Google Scholar 

  16. C.H. Moon, Y. Lee, ISIJ Int. 48 (2008) 1409–1418.

    Google Scholar 

  17. J. Pan, W. Pachla, S. Rosenberry, B. Avitzur, J. Eng. Ind. 106 (1984) 150–160.

    Google Scholar 

  18. S.H. Zhang, X.D. Chen, J.X. Hou, D.W. Zhao, Meccanica 51 (2016) 1189–1199.

    MathSciNet  Google Scholar 

  19. J. Sun, Y.M. Liu, Y.K. Hu, Q.L. Wang, D.H. Zhang, D.W. Zhao, Int. J. Mech. Sci. 108–109 (2016) 166–173.

    Google Scholar 

  20. W. Peng, D. Zhang, D. Zhao, Int. J. Adv. Manuf. Technol. 91 (2017) 2233–2243.

    Google Scholar 

  21. S.H. Zhang, B.N. Song, X.N. Wang, D.W. Zhao, Appl. Math. Model. 38 (2014) 3485–3494.

    MathSciNet  Google Scholar 

  22. Y. Yea, Y. Ko, N. Kim, J. Lee, J. Mater. Process. Technol. 140 (2003) 478–486.

    Google Scholar 

  23. Y.K. Kim, W.J. Kwak, T.J. Shin, S.M. Hwang, ISIJ Int. 50 (2010) 1644–1652.

    Google Scholar 

  24. S. Xiong, J.M.C. Rodrigues, P.A.F. Martins, Finite Elem. Anal. Des. 32 (1999) 221–233.

    Google Scholar 

  25. S.M. Hwang, M.S. Joun, Int. J. Mech. Sci. 34 (1992) 971–984.

    Google Scholar 

  26. W.J. Kwak, Y.H. Kim, H.D. Park, J.H. Lee, S.M. Hwang, ISIJ Int. 40 (2000) 1013–1018.

    Google Scholar 

  27. X. Duan, T. Sheppard, Int. J. Mech. Sci. 44 (2002) 2155–2172.

    Google Scholar 

  28. L.Z. Liu, X.H. Liu, G.D. Wang, J. Northeast. Univ. 23 (2001) 34–36.

    Google Scholar 

  29. J.L. Zhang, Z.S. Cui, J. Cent. South Univ. Technol. 18 (2011) 16–22.

    Google Scholar 

  30. X.H. Liu, X. Shi, S.Q. Li, J.Y. Xu, G.D. Wang, J. Iron Steel Res. Int. 14 (2007) No. 5, 22–26.

    Google Scholar 

  31. R. Ma, Principle of artificial neural network, China Machine Press, Beijing, China, 2010.

    Google Scholar 

  32. X.H. Liu, Q.L. Zhao, Z.Y. Huang, Steel Rolling 34 (2017) No. 4, 1–5.

    Google Scholar 

  33. G. Huang, G.B. Huang, S. Song, K.Y. You, Neural Networks 61 (2015) 32–48.

    Google Scholar 

  34. T.L. Fu, S.D. Wang, G.D. Wang, S.C. Wu, J. Northeast. Univ. 29 (2008) 1438–1442.

    Google Scholar 

  35. Y. Mahmoodkhani, M.A. Wells, G. Song, Ironmak. Steelmak. 44 (2017) 281–286.

    Google Scholar 

  36. Z.Y. Guo, J.N. Sun, F.S. Du, J. South. Afr. Inst. Min. Metall. 116 (2016) 43–48.

    Google Scholar 

  37. N. Ch, H.K. Ch, K.R. Venakata Kiran, P.S. Dandamudi, Eng. Res. Express 3 (2021) 035046.

  38. Z. Wang, D. Zhang, D. Gong, W. Peng, ISIJ Int. 59 (2019) 1604–1613.

    Google Scholar 

  39. M. Bagheripoor, H. Bisadi, Appl. Math. Model. 37 (2013) 4593–4607.

    Google Scholar 

  40. S.H. Zhang, L. Deng, L.Z. Che, J. Manuf. Process. 75 (2022) 100–109.

    Google Scholar 

  41. C.G. Cui, Computer and Modernization (2019) No. 8, 74.

  42. J. Li, X. Wang, Q. Yang, Z. Guo, L. Song, X. Mao, Int. J. Adv. Manuf. Technol. 121 (2022) 4087–4098.

    Google Scholar 

  43. S.H. Zhang, X.R. Jiang, F.X. You, Y.X. Li, Journal of Netshape Forming Engineering 12 (2020) No. 2, 8–14.

    Google Scholar 

  44. Z. Wang, Research on Iron and Steel 45 (2017) No. 3, 23–26.

    Google Scholar 

  45. X.N. Sun, Study and application on artificial neural network based rolling, Yanshan University, Qinhuangdao, Hebei, 2009.

    Google Scholar 

  46. M.J. Yang, Machine Tool Hydraulics 46 (2018) No. 22, 27–29.

    Google Scholar 

  47. J.Y. Liu, X.X. Liu, B.T. Le, Complexity 2019 (2019) 3476521.

    Google Scholar 

  48. Q.N. Wang, L.B. Song, J.W. Zhao, H.Y. Wang, Int. J. Adv. Manuf. Technol. 125 (2022) 387–397.

    Google Scholar 

  49. J. Cao, T. Wang, Y. Cao, C.N. Song, B. Gao, B. Wang, Int. J. Adv. Manuf. Technol. 115 (2021) 319–328.

    Google Scholar 

  50. R. Hwang, H. Jo, K.S. Kim, H.J. Hwang, IEEE Access 8 (2020) 153123–153133.

  51. X.M. Ji, L. Wang, K.W. Gao, J. Liu, J. Iron Steel Res. 32 (2020) 393–399.

    Google Scholar 

  52. J.G. Ding, F.L. Liu, H.Z. Du, X. Li, D.H. Zhang, Steel Rolling (2022) http://kns.cnki.net/kcms/detail/11.2466.TF.20221024.1252.002.html.

  53. Y.F. Ji, L.B. Song, J. Sun, W. Peng, H.Y. Li, L.F. Ma, J. Cent. South Univ. 28 (2021) 2333–2344.

    Google Scholar 

  54. J.F. Deng, J. Sun, W. Peng, Y.H. Hu, D.H. Zhang, Applied Soft Computing 78 (2019) 119–131.

    Google Scholar 

  55. Z.H. Wang, Y.M. Liu, D.Y. Gong, D.H. Zhang, Steel Res. Int. 89 (2018) 1800003.

  56. Z.T. Zhao, L.Y. Zhu, X.Y. Gao, L. Wang, Metallurgical Industry Automation 46 (2022) No. 3, 34–41+93.

  57. J. Sun, J. Deng, W. Peng, D. Zhang, Int. J. Precis. Eng. Manuf. 22 (2021) 301–311.

    Google Scholar 

  58. X. Li, Improvement of multi-objective particle swarm optimization algorithm and its application in rolling schedule optimization, Yanshan University, Qinhuangdao, Hebei, 2019.

    Google Scholar 

  59. Z.Y. Hu, Z.H. Wei, X.M. Ma, H. Sun, J.M. Yang, ISA Trans. 102 (2020) 193–207.

    Google Scholar 

  60. Y. Wang, J. Wang, C. Yin, Q. Zhao, IEEE Access 8 (2020) 80417–80426.

    Google Scholar 

  61. Z.W. Yan, H.N. Bu, C.Z. Hu, B. Pang, H.Y. Lyu, Int. J. Adv. Manuf. Technol. 125 (2023) 2869–2884.

    Google Scholar 

  62. L. Chen, W. Sun, A. He, T. Yuan, J. Shi, Y. Qiang, Metals 12 (2022) 924.

    Google Scholar 

  63. S.W. Wu, G.M. Cao, X.G. Zhou, Z.Y. Liu, J. Northeast. Univ. 37 (2016) 1710–1715.

    Google Scholar 

  64. Y. Zhang, R.M. Lin, H. Zhang, Y. Peng, Compl. Intell. Syst. (2022) No. 9, 133–145.

  65. W.G. Li, W. Yang, Y.T. Zhao, B.K. Yan, X.H. Liu, J. Cent. South Univ. 26 (2019) 2379–2392.

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend their thanks to the financial support from the National Natural Science Foundation of China (Grant Nos. 52074187, U1960105, and 52274388). Also, the authors thank for the open-ended fund from Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology (No. MADTOF2022B01). The valuable suggestions from reviewers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-hu Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sh., Zhang, Y., Li, Wg. et al. Research progress and intelligent trend of accurate modeling of rolling force in metal sheet. J. Iron Steel Res. Int. 30, 2111–2121 (2023). https://doi.org/10.1007/s42243-023-01067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01067-4

Keywords

Navigation