Skip to main content

Advertisement

Log in

Effect of heat treatment on microstructural evolution, mechanical properties and tribological properties of H13 steel prepared using selective laser melting

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

H13 tool steel was successfully prepared by selective laser melting (SLM) technology. The effects of heat treatment on the microstructure, mechanical properties, and tribological properties of SLMed H13 steel were investigated. The heat treatment process involved a solution treatment and a double aging treatment of the deposited H13 tool steel prepared by SLM. The aim is to optimize the microstructure and mechanical properties of SLMed H13 steel. Due to the rapid heating and cooling effects of SLM, carbide precipitation in the deposited H13 steel was not uniform and residual stresses were present. The purpose of the solution treatment is to dissolve the solution at a high temperature to eliminate the residual stresses and defects introduced by the SLM-forming structure. The solution treatment and first aging treatment produced the precipitation of small carbides at the grain boundaries and inside the crystals, which increased the hardness of SLMed H13 steel. The hardness increased from 538 ± 4.0 HV of the as-deposited sample to 548 ± 5.8 HV of samples after the first aging treatment. Accordingly, the ultimate tensile strength and the elongation at break decreased from 1882 MPa and 11.5% in the as-deposited sample to 1697 MPa and 7.9% in those after the first aging treatment, respectively. Furthermore, the friction coefficient and wear rate in the as-deposited sample decreased from 0.5160 and 2.36 × 10–6 mm−3 N−1 m−1 to 0.4244 and 1.04 × 10–6 mm−3 N−1 m−1, respectively. However, the distribution of carbides inside the crystals was not uniform. The second aging treatment adjusted the morphology of carbide precipitation and made it more uniform, but the precipitation of carbides grew and settled at the bottom of the grain boundaries. The hardness decreased to 533 ± 6.7 HV compared with that with the first aging treatment, but the ultimate tensile strength and plasticity reached a balance (1807 MPa, 14.05%). Accordingly, the friction coefficient and wear rate also showed a stable and decreasing trend (0.4407, 0.98 × 10–6 mm−3 N−1 m−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Demir, S. Gündüz, M.A. Erden, Int. J. Adv. Manuf. Technol. 95 (2018) 2951–2958.

    Article  Google Scholar 

  2. V. Jagota, R.K. Sharma, J. Mech. Eng. Sci. 14 (2020) 6789–6800.

    Article  Google Scholar 

  3. B. Ren, D. Lu, R. Zhou, Z. Li, J. Guan, J. Mater. Res. 34 (2019) 1415–1425.

    Article  Google Scholar 

  4. P. Kattire, S. Paul, R. Singh, W. Yan, J. Manuf. Process. 20 (2015) 492–499.

    Article  Google Scholar 

  5. Y. Han, C. Li, S. He, C. Gao, S. Chen, E. Li, Met. Mater. Int. 28 (2022) 755–769.

    Article  Google Scholar 

  6. Y. Huang, G. Cheng, S. Li, W. Dai, Steel Res. Int. 90 (2019) 1900035.

    Article  Google Scholar 

  7. Y. Lu, K. Ripplinger, X. Huang, Y. Mao, D. Detwiler, A.A. Luo, J. Mater. Process. Technol. 271 (2019) 444–454.

    Article  Google Scholar 

  8. D.M. Santhoshsarang, K. Divya, G. Telasang, S. Soundarapandian, R. Bathe, G. Padmanabham, Trans. Indian National Acad. Eng. 6 (2021) 1037–1048.

    Article  Google Scholar 

  9. E.B. Fonseca, A.H.G. Gabriel, L.C. Araújo, P.L.L. Santos, K.N. Campo, E.S.N. Lopes, Addit. Manuf. 34 (2020) 101250.

    Google Scholar 

  10. S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, S. Shamsdini, J. Li, M. Mohammadi, Addit. Manuf. 29 (2019) 100797.

    Google Scholar 

  11. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Appl. Sci. 9 (2019) 3316.

    Article  Google Scholar 

  12. M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, P. Krakhmalev, Mater. Sci. Eng. A 742 (2019) 584–589.

    Article  Google Scholar 

  13. M. Mazur, M. Leary, M. McMillan, J. Elambasseril, M. Brandt, Rapid Prototyping J. l22 (2016) 504–518.

    Article  Google Scholar 

  14. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, J. Van Humbeeck, Phys. Procedia 83 (2016) 882–890.

    Article  Google Scholar 

  15. J. Wang, S. Liu, Y. Fang, Z. He, Int. J. Adv. Manuf. Technol. 108 (2020) 2453–2466.

    Article  Google Scholar 

  16. Y. Ren, B. Han, H. Wu, J. Wang, B. Liu, B. Wei, Z. Jiao, I. Baker, Scripta Mater. 224 (2023) 115115.

    Article  Google Scholar 

  17. Y. Sun, J. Wang, M. Li, Y. Wang, C. Li, T. Dai, M. Hao, H. Ding, Mater. Des. 224 (2022) 111295.

    Article  Google Scholar 

  18. T. Wen, F. Yang, J. Wang, H. Yang, J. Fu, S. Ji, J. Mater. Res. Technol. 22 (2023) 157–168.

    Article  Google Scholar 

  19. J. Yan, H. Song, Y. Dong, W.M. Quach, M. Yan, Mater. Sci. Eng. A 773 (2020) 138845.

    Article  Google Scholar 

  20. F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, M. Pellizzari, Mater. Sci. Eng. A 753 (2019) 109–121.

    Article  Google Scholar 

  21. S. Alvi, K. Saeidi, F. Akhtar, Wear 448 (2020) 203228.

    Article  Google Scholar 

  22. L. Han, Y. Wang, S. Liu, Z. Zhang, X. Song, Y. Li, W. Liu, Z. Yang, M. Mu, J. Mater. Res. Technol. 21 (2022) 5056–5065.

    Article  Google Scholar 

  23. M. Narvan, K.S. Al-Rubaie, M. Elbestawi, Materials 12 (2019) 2284.

    Article  Google Scholar 

  24. H. Ding, T. Liu, J. Wei, L. Chen, F. Cao, B. Zhang, R. Luo, X. Cheng, Mater. Des. 224 (2022) 111317.

    Article  Google Scholar 

  25. F. Lei, T. Wen, F. Yang, J. Wang, J. Fu, H. Yang, J. Wang, J. Ruan, S. Ji, Materials 15 (2022) 2686.

    Article  Google Scholar 

  26. K. Shi, F. Zhao, Y. Liu, S. Yin, R. Yang, Materials 15 (2022) 3970.

    Article  Google Scholar 

  27. J. Ge, T. Ma, Y. Chen, T. Jin, H. Fu, R. Xiao, Y. Lei, J. Lin, J. Alloy. Compd. 783 (2019) 145–155.

    Article  Google Scholar 

  28. A. Weidner, A. Müller, A. Weiss, H. Biermann, Mater. Sci. Eng. A 571 (2013) 68–76.

    Article  Google Scholar 

  29. H.X. Yang, C. Meng, G.Y. Song, T.F. Ning, Laser Eng. 39 (2018) 113–126.

    Google Scholar 

  30. H. Wang, J. Li, C.B. Shi, J. Li, B. He, Mater. Trans. 58 (2017) 152–156.

    Article  Google Scholar 

  31. X. Hu, L. Li, X. Wu, M. Zhang, Int. J. Fatigue 28 (2006) 175–182.

    Article  Google Scholar 

  32. R. Gecu, Mater. Chem. Phys. 292 (2022) 126802.

    Article  Google Scholar 

  33. M.J. Holzweissig, A. Taube, F. Brenne, M. Schaper, T. Niendorf, Metall. Mater. Trans. B 46 (2015) 545–549.

    Article  Google Scholar 

  34. M. Wang, Y. Wu, Q. Wei, Y. Shi, Metals 10 (2020) 116.

    Article  Google Scholar 

  35. M. Yuan, Y. Cao, S. Karamchedu, S. Hosseini, Y. Yao, J. Berglund, L. Liu, L. Nyborg, Mater. Sci. Eng. A 831 (2022) 142322.

    Article  Google Scholar 

  36. S. Shakerin, M. Sanjari, B.S. Amirkhiz, M. Mohammadi, Mater. Charact. 170 (2020) 110728.

    Article  Google Scholar 

  37. J. Zhu, G.T. Lin, Z.H. Zhang, J.X. Xie, Mater. Sci. Eng. A 797 (2020) 140139.

    Article  Google Scholar 

  38. B. AlMangour, D. Grzesiak, J.M. Yang, Mater. Des. 96 (2016) 150–161.

    Article  Google Scholar 

  39. M. Katancik, S. Mirzababaei, M. Ghayoor, S. Pasebani, J. Alloy. Compd. 849 (2020) 156319.

    Article  Google Scholar 

  40. J. Mutua, S. Nakata, T. Onda, Z.C. Chen, Mater. Des. 139 (2018) 486–497.

    Article  Google Scholar 

  41. H. Eskandari, H.R. Lashgari, L. Ye, M. Eizadjou, H. Wang, Mater. Today Commun. 30 (2022) 103075.

    Article  Google Scholar 

  42. Z. Nie, G. Wang, J.D. McGuffin-Cawley, B. Narayanan, S. Zhang, D. Schwam, M. Kottman, Y.K. Rong, J. Mater. Process. Technol. 235 (2016) 171–186.

    Article  Google Scholar 

  43. B. Li, S. Zhang, Q. Zhang, J. Chen, J. Zhang, Int. J. Mech. Sci. 149 (2018) 241–253.

    Article  Google Scholar 

  44. W.W. Mao, A.G. Ning, H.J. Guo, Int. J. Miner. Metall. Mater. 23 (2016) 1056–1064.

    Article  Google Scholar 

  45. X. Chen, L. Zhao, D. Li, L. Jiang, H. Wang, Mater. Lett. 294 (2021) 129803.

    Article  Google Scholar 

  46. X.H. Cui, S.Q. Wang, M.X. Wei, Z.R. Yang, J. Mater. Eng. Perform. 20 (2011) 1055–1062.

    Article  Google Scholar 

  47. A. Bahrami, S.H. Mousavi Anijdan, M.A. Golozar, M. Shamanian, N. Varahram, Wear 258 (2005) 846–851.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 52104341), Key Technologies Research and Development Program (Grant Nos. 2021YFB3701902 and 2021YFB3701903), Natural Science Basic Research Program of Shaanxi Province (Grant Nos. 2022JM-259 and 2022JQ-367), and Postdoctoral Research Foundation of China (Grant No. 2021M702554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-feng Liu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Lx., Wang, Y., Liu, Sf. et al. Effect of heat treatment on microstructural evolution, mechanical properties and tribological properties of H13 steel prepared using selective laser melting. J. Iron Steel Res. Int. 31, 1246–1259 (2024). https://doi.org/10.1007/s42243-023-01065-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01065-6

Keywords

Navigation