Skip to main content
Log in

DLF-YOLOF: an improved YOLOF-based surface defect detection for steel plate

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Surface defects can affect the quality of steel plate. Many methods based on computer vision are currently applied to surface defect detection of steel plate. However, their real-time performance and object detection of small defect are still unsatisfactory. An improved object detection network based on You Only Look One-level Feature (YOLOF) is proposed to show excellent performance in surface defect detection of steel plate, called DLF-YOLOF. First, the anchor-free detector is used to reduce the network hyperparameters. Secondly, deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps. Also, the soft non-maximum suppression is used to improve detection accuracy significantly. Finally, data augmentation is performed for small defect objects during training to improve detection accuracy. Experiments show the average precision and average precision for small objects are 42.7% and 33.5% at a detection speed of 62 frames per second on a single GPU, respectively. This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Luo, X. Fang, L. Liu, C. Yang, Y. Sun, IEEE Trans. Instrum. Meas. 69 (2020) 626–644.

    Article  ADS  CAS  Google Scholar 

  2. N. Neogi, D.K. Mohanta, P.K. Dutta, EURASIP J. Image Video Process. 2014 (2014) 1–19.

    Article  Google Scholar 

  3. X. Sun, J. Gu, S. Tang, J. Li, Appl. Sci. 8 (2018) 2195.

    Article  CAS  Google Scholar 

  4. K. Song, Y. Yan, Appl. Surf. Sci. 285 (2013) 858–864.

    Article  ADS  CAS  Google Scholar 

  5. M.X. Chu, Y. Feng, Y.H. Yang, X. Deng, J. Iron Steel Res. Int. 28 (2021) 303–315.

    Article  Google Scholar 

  6. H. Wang, J. Zhang, Y. Tian, H. Chen, H. Sun, K. Liu, IEEE Trans. Ind. Inform. 15 (2019) 2798–2809.

    Article  Google Scholar 

  7. Q. Sun, J. Cai, Z. Sun, Math. Probl. Eng. 2016 (2016) 5797654.

    Google Scholar 

  8. J. Hou, K. Xia, F. Yang, B. Zu, Math. Probl. Eng. 2018 (2018) 9298017.

    Google Scholar 

  9. M. Tang, Y. Li, W. Yao, L. Hou, Q. Sun, J. Chen, Meas. Sci. Technol. 32 (2021) 115401.

    Article  ADS  CAS  Google Scholar 

  10. C. Lin, C. Chen, C. Yang, F. Akhyar, C. Hsu, H. Ng, in: Advances in Artificial Intelligence, Software and Systems Engineering, Springer, Berlin, Germany, 2019, pp. 202–212.

  11. J.P. Yun, D. Kim, K. Kim, S.J. Lee, C.H. Park, S.W. Kim, Opt. Eng. 56 (2017) 053108.

    Article  ADS  Google Scholar 

  12. G. Song, K. Song, Y. Yan, IEEE Trans. Instrum. Meas. 69 (2020) 9709–9719.

    Article  ADS  Google Scholar 

  13. Q. Ren, J. Geng, J. Li, 2018 Chinese Automation Congress (CAC), IEEE, Xi'an, China, 2018, pp. 2173–2178.

    Google Scholar 

  14. W. Li, X. Ye, Y. Zhao, W. Wang, Acta Electronica Sin. 48 (2020) 1284–1292.

    Google Scholar 

  15. X. Tao, D. Zhang, W. Ma, X. Liu, D. Xu, Appl. Sci. 8 (2018) 1575.

    Article  Google Scholar 

  16. M. Sharma, J. Lim, H. Lee, Appl. Sci. 12 (2022) 6004.

    Article  CAS  Google Scholar 

  17. Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, J. Sun, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, IEEE, Piscataway, NJ, USA, 2021, pp. 13039–13048.

  18. T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, in: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, Piscataway, NJ, USA, 2017, pp. 2117–2125.

  19. Y. He, K. Song, Q. Meng, Y. Yan, IEEE Trans. Instrum. Meas. 69 (2020) 1493–1504.

    Article  ADS  Google Scholar 

  20. T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, in: European conference on computer vision, Springer, Berlin, Germany, 2014, pp. 740–755.

  21. J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, in: Proceedings of the IEEE international conference on computer vision, IEEE, Piscataway, NJ, USA, 2017, pp. 764–773.

  22. N. Bodla, B. Singh, R. Chellappa, L.S. Davis, in: Proceedings of the IEEE international conference on computer vision, IEEE, Piscataway, NJ, USA, 2017, pp. 5561–5569.

  23. Z. Tian, C. Shen, H. Chen, T. He, in: Proceedings of the IEEE/CVF international conference on computer vision, IEEE, Piscataway, NJ, USA, 2019, pp. 9627–9636.

  24. A. Neubeck, L. Van Gool, in: 18th International Conference on Pattern Recognition, IEEE, Piscataway, NJ, USA, 2006, pp. 850–855.

  25. K. He, X. Zhang, S. Ren, J. Sun, in: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, Piscataway, NJ, USA, 2016, pp. 770–778.

  26. S. Woo, J. Park, J.Y. Lee, I.S. Kweon, in: Proceedings of the European conference on computer vision, Springer, Berlin, Germany, 2018, pp. 3–19.

  27. S. Ren, K. He, R. Girshick, J. Sun, in: Advances in neural information processing systems, MIT Press, Cambridge, USA, 2017, pp. 1137–1149.

    Google Scholar 

  28. Z. Cai, N. Vasconcelos, in: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, Piscataway, NJ, USA, 2018, pp. 6154–6162.

  29. T.Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, in: Proceedings of the IEEE international conference on computer vision, IEEE, Piscataway, NJ, USA, 2017, pp. 2980–2988.

  30. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, in: European conference on computer vision, Springer, Berlin, Germany, 2016, pp. 21–37.

  31. G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie, K. Michael, J. Fang, imyhxy, Lorna, C. Wong, Z. Yifu, A. V, D. Montes, Z. Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, tkianai, yxNONG, P. Skalski, A. Hogan, M. Strobel, M. Jain, L. Mammana, xylieong, ultralytics/yolov5, Zenodo, ultralytics/yolov5: v6.2-YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai integrations, August 17 2022. https://doi.org/10.5281/zenodo.7002879.

  32. H.G. Ramaswamy, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, IEEE, Piscataway, NJ, USA, 2020, pp. 983–991.

Download references

Acknowledgements

This paper is supported by the Natural Science Foundation of Liaoning Province (No. 2022-MS-353) and Basic Scientific Research Project of Education Department of Liaoning Province (Nos. 2020LNZD06 and LJKMZ20220640)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mao-xiang Chu or Rong-fen Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Gh., Chu, Mx., Gong, Rf. et al. DLF-YOLOF: an improved YOLOF-based surface defect detection for steel plate. J. Iron Steel Res. Int. 31, 442–451 (2024). https://doi.org/10.1007/s42243-023-01059-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01059-4

Keywords

Navigation