Skip to main content
Log in

Permanent lining castable with low bulk density and thermal conductivity: bauxite castable for tundish obtained by adding pearlescent sand

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The low thermal conductivity and light mass of castables for tundish permanent linings are crucial for minimizing the heat loss of molten steel. In consideration of the low bulk density and thermal conductivity of pearlescent sand, the thermal insulation performance of castables was attempted to be improved by adding pearlescent sand. Pearlescent sand was modified to prevent the strength of its porous structure from deteriorating. The modification mechanism of pearlescent sand and the effect of pearlescent sand on the performance of bauxite castables were studied. The results suggested that the addition of the modified pearlescent sand significantly raised the apparent porosity and decreased the bulk density of bauxite castable. At 1000 °C, the bulk density of more than 60% of the modified pearlescent sand–bauxite castable was only 2.03 g/cm3. The mechanical properties and thermal shock resistance of the modified pearlescent sand–bauxite castable were inferior to those of conventional bauxite castable but were adequate to meet the use conditions of castables for tundish permanent linings. At high temperatures of 200–800 °C, the thermal conductivity of more than 60% of the modified pearlescent sand–bauxite castable was smaller than that of conventional bauxite castable. The addition of the modified pearlescent sand can greatly reduce the thermal conductivity and bulk density of bauxite castable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Sahai, Metall. Mater. Trans. B 47 (2016) 2095–2106.

    Article  CAS  Google Scholar 

  2. M.A. Barron-Meza, J. de J. Barreto-Sandoval, R.D. Morales, Metall. Mater. Trans. B 31 (2000) 63–74.

    Article  Google Scholar 

  3. M. Ye, M. Zhao, S. Chen, S. Yang, J. Li, Metals 10 (2020) 1438.

    Article  CAS  Google Scholar 

  4. Q. Wang, F. Qi, B. Li, F. Tsukihashi, ISIJ Int. 54 (2014) 2796–2805.

    Article  CAS  Google Scholar 

  5. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.

    Article  CAS  Google Scholar 

  6. J. Zhou, J. Xie, B. Wang, H. Lei, H. Zhang, H. Ni, ISIJ Int. 57 (2017) 1037–1044.

    Article  CAS  Google Scholar 

  7. H. Arcos-Gutierrez, J. de J. Barreto, S. Garcia-Hernandez, A. Ramos-Banderas, J. Appl. Math. 2012 (2012) 1–16.

    Article  Google Scholar 

  8. M. Musmeci, N.M. Rendtorff, L. Musante, L. Martorello, P. Galliano, E.F. Aglietti, Ceram. Int. 40 (2014) 14091–14098.

    Article  CAS  Google Scholar 

  9. J. Yan, W. Yan, S. Schafföner, Y. Dai, Z. Chen, Q. Wang, G. Li, C. Jia, Ceram. Int. 47 (2021) 6540–6547.

    Article  CAS  Google Scholar 

  10. W. Yan, N. Li, B.Q. Han, Sci. Sinter. 41 (2009) 275–281.

    Article  CAS  Google Scholar 

  11. Q. Chen, W. Yan, N. Li, X. Lin, Z. Zhang, B. Han, Y. Wei, Sci. Sinter. 50 (2018) 205–215.

    Article  CAS  Google Scholar 

  12. Z. Chen, W. Yan, S. Schafföner, S. Ma, Y. Dai, N. Li, J. Alloy. Compd. 764 (2018) 210–215.

    Article  CAS  Google Scholar 

  13. G. Wu, W. Yan, S. Schafföner, X. Lin, S. Ma, Y. Zhai, X. Liu, L. Xu, Constr. Build. Mater. 185 (2018) 102–109.

    Article  CAS  Google Scholar 

  14. H. Gu, A. Huang, M. Zhang, Z. Li, L. Ma, B. Du, Y. Zuo, China's Refract. 23 (2014) No. 4, 22–26.

    Google Scholar 

  15. Y. Liu, E. Wang, L. Xu, T. Yang, Z. He, T. Liang, X. Hou, Int. J. Miner. Metall. Mater. 30 (2023) 756–765.

    Article  CAS  Google Scholar 

  16. J. He, X. Lyu, J. Zhang, W. Zhou, Y. Li, China's Refract. 29 (2020) No. 2, 6–10.

    Google Scholar 

  17. G. Wu, W. Yan, S. Schafföner, Y. Dai, B. Han, T. Li, S. Ma, N. Li, G. Li, J. Alloy. Compd. 796 (2019) 131–137.

    Article  CAS  Google Scholar 

  18. B.L. Krasnyi, V.P. Tarasovskii, A.B. Krasnyi, A.L. Galganova, A.V. Reznichenko, Refract. Ind. Ceram. 55 (2015) 559–561.

    Article  CAS  Google Scholar 

  19. R. Stonys, J. Malaiskiene, J. Skamat, V. Antonovic, Materials 14 (2021) 4736.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. Zhao, F. Zhao, Q. Zhang, T. Ge, China's Refract. 28 (2019) No. 3, 22–26.

    Google Scholar 

  21. Y.N. Fang, H.Z. Gu, Y.S. Fen, L.J. Wang, Y.J. Li, Adv. Mater. Res. 194–196 (2011) 2135–2139.

    Article  Google Scholar 

  22. C. Guo, E. Wang, X. Hou, J. Kang, T. Yang, T. Liang, G. Bei, J. Am. Ceram. Soc. 104 (2021) 4854–4866.

    Article  CAS  Google Scholar 

  23. Y. Liu, Y. Gao, E. Wang, G. Chen, E. Xu, F. Zhao, Y. Zhao, C. Li, X. Hou, J. Eur. Ceram. Soc. 43 (2023) 1714–1722.

    Article  CAS  Google Scholar 

  24. Y. Chen, G. Liu, Q. Gu, S. Li, B. Fan, R. Zhang, H. Li, Materialia 8 (2019) 100517.

    Article  CAS  Google Scholar 

  25. M. Li, D. Ouyang, C. Li, J. Aust. Ceram. Soc. 56 (2020) 923–930.

    Article  CAS  Google Scholar 

  26. R. Yu, P. Liu, G. Dong, H. Dong, China's Refractory 26 (2017) No. 4, 1–6.

    Google Scholar 

  27. Z.Y. Luo, K.Q. Liu, B.J. Wang, F. Kang, Refractories (2015) No. S2, 102–104.

    Google Scholar 

  28. S. Wu, H. Yan, Materials Reports 23 (2012) 18–23.

    Google Scholar 

  29. F. Bektas, L. Turanli, P.J.M. Monteiro, Cem. Concr. Res. 35 (2005) 2014–2017.

    Article  CAS  Google Scholar 

  30. J.G. Han, Z. Li, G.H. Jia, Sci. Tech. Engrg. 16 (2016) No. 12, 136–140.

    Google Scholar 

  31. J. de Vries, R.B. Polder, Constr. Build. Mater. 11 (1997) 259–265.

    Article  Google Scholar 

  32. O. Sengul, S. Azizi, F. Karaosmanoglu, M.A. Tasdemir, Energy Build. 43 (2011) 671–676.

    Article  Google Scholar 

  33. S. Hasanabadi, S.M. Sadrameli, S. Sami, J. Therm. Anal. Calorim. 144 (2021) 61–69.

    Article  CAS  Google Scholar 

  34. R. Li, Y. Zhao, B. Xia, Z. Dong, S. Xue, X. Huo, X. Wu, Y.G. Liu, Z. Huang, M. Fang, X. Min, X. Zhang, Mater. Chem. Phys. 261 (2021) 124226.

    Article  CAS  Google Scholar 

  35. K. Peng, H.M. Yang, Adv. Mater. Res. 668 (2013) 360–364.

    Article  Google Scholar 

  36. F. Chen, Y. Zhang, J. Liu, X. Wang, P.K. Chu, B. Chu, N. Zhang, Constr. Build. Mater. 249 (2020) 118728.

    Article  CAS  Google Scholar 

  37. T. Gao, B.P. Jelle, A. Gustavsen, S. Jacobsen, Constr. Build. Mater. 52 (2014) 130–136.

    Article  Google Scholar 

  38. C.J. Lee, G.S. Kim, S.H. Hyun, J. Mater. Sci. 37 (2002) 2237–2241.

    Article  ADS  CAS  Google Scholar 

  39. K. Zheng, J. Zhu, H. Liu, X. Zhang, E. Wang, Materials 14 (2021) 988.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. J.D. Wei, Z.S. Deng, X.S. Xue, Q. Sun, J. Yang, J. Wang, J. Inorg. Mater. 16 (2001) 545–549.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the National Natural Science Foundation of China (U21A20317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-an Zhou.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, J., Wang, B. et al. Permanent lining castable with low bulk density and thermal conductivity: bauxite castable for tundish obtained by adding pearlescent sand. J. Iron Steel Res. Int. 31, 634–646 (2024). https://doi.org/10.1007/s42243-023-01048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01048-7

Keywords

Navigation