Skip to main content
Log in

Effect of slag composition and current density on ingot cleanliness during low-frequency/DC electroslag process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

For in-depth investigation of the effect of low-frequency and DC remelting on the cleanliness of electroslag ingot, laboratory experiments were performed with different current densities and slag compositions to analyze the variation of oxygen content and inclusions in electroslag ingots. When 70% CaF2 + 30% Al2O3 binary slag is used for remelting, the current density has different effects on the cleanliness of electroslag ingots with different power supply modes. At the power frequency of 2 Hz, the oxygen content and the number of inclusions in the electroslag ingot increase significantly with the increase in remelting current density. By contrast, when consumable electrode connected to cathode (DCSP) or consumable electrode connected to anode (DCRP) is employed, the current density has little influence on ingot cleanliness. At the same current density, DCSP remelting has a more adverse effect on ingot cleanliness compared with DCRP remelting. Compared with the use of 70% CaF2 + 30% Al2O3 binary slag, using 60% CaF2 + 20% Al2O3 + 20% CaO ternary slag significantly reduces the oxygen content and the number of inclusions in electroslag ingots, regardless of whether low-frequency or DC electroslag remelting occurs. The increase in oxygen and inclusions in electroslag ingot is caused by the electrolysis of Al2O3 in the slag pool. The increased inclusions mainly involve Al2O3 or Al-containing oxides with small size. As regards the power supply mode, low frequency, DCRP, and DCSP promote the electrolysis of Al2O3 in the slag pool. From the perspective of remelting slag composition, the slag with lower Al2O3 content can reduce the pollution of electrolysis on electroslag ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.J. Wang, L.F. Zhang, W. Chen, S.D. Wang, Y.X. Zhang, Y. Ren, Chin. J. Eng. 43 (2021) 786–796.

    Google Scholar 

  2. M. Jamil, A.M. Khan, H. Hegab, S. Sarfraz, N. Sharma, M. Mia, M.K. Gupta, G. Zhao, H. Moustabchir, C.I. Pruncu, Materials 12 (2019) 2474.

    Article  Google Scholar 

  3. M. Thunman, S. Du, Steel Res. Int. 79 (2008) 124–132.

    Article  Google Scholar 

  4. H. Arashima, Y. Yanagisawa, R. Ikeda, S. Isobe, N. Hashimoto, Int. J. Hydrogen Energy 47 (2022) 25057–25065.

  5. Z.B. Li, Electroslag metallurgy theory and practice, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  6. C.B. Shi, S.J. Wang, J. Li, J.W. Cho, J. Iron Steel Res. Int. 28 (2021) 1483–1503.

    Article  Google Scholar 

  7. C. Chen, J. Wang, D. Shu, S. Zhang, B. Sun, Mater. Trans. 52 (2011) 2266–2269.

    Article  Google Scholar 

  8. P. Lv, Research on key technology of low frequency power supply for large tonnage electroslag furnace, Xi'an Shiyou University, Xi’an, China, 2017.

  9. K. Yu, A. Yu, X. Yang, Special Cast. Nonferrous Alloys 39 (2019) 133–136.

    Google Scholar 

  10. C. Alok, J. Rudolf, T. Franz, Stahl Eisen 100 (1980) 1012–1018.

    Google Scholar 

  11. B.M. Starostin, N.I. Vorob'ev, N.S. Shinkina, M.G. Evchenko, Stal' 3 (1998) No. 3, 26–28.

    Google Scholar 

  12. Y. Wei, X. Guo, Y. Huang, X. Xin, B. Chai, Y. Yang, China Metall. 27 (2017) 58–61.

    Google Scholar 

  13. H. Li, Y.M. Yang, P. Lv, Metallurgical Industry Automation 41 (2017) No. 2, 40–44, 65.

  14. L. Chang, Y. Su, L. Zhang, C. Zhu, T. Xu, X. Shi, Iron and Steel 57 (2022) 43–53.

    Google Scholar 

  15. L.Z. Chang, X.F. Shi, H.S. Yang, Z.B. Li, J. Iron Steel Res. Int. 16 (2009) No. 4, 7–11.

    Article  Google Scholar 

  16. A. Paar, R. Schneider, P. Zeller, G. Reiter, S. Paul, P. Würzinger, Steel Res. Int. 85 (2014) 570–578.

    Article  Google Scholar 

  17. A. Paar, R. Schneider, P. Zeller, G. Reiter, S. Paul, I. Silier, P. Wurzinger, in: 10th International Symposium on Liquid Metal Processing and Casting, The Minerals, Metals and Materials Society, Austin, TX, USA, 2013, pp. 29–36.

    Google Scholar 

  18. E. Karimi-Sibaki, A. Kharicha, A. Vakhrushev, M. Wu, A. Ludwig, J. Bohacek, J. Iron Steel Res. Int. 28 (2021) 1551–1561.

  19. X.A. Li, N. Wang, M. Chen, Z.Q. Du, ISIJ Int. 63 (2023) 303–312.

  20. H.J. Zhong, M. Jiang, Z.Y. Wang, X.G. Zhen, H.M. Zhao, T.G. Li, X.H. Wang, Metall. Mater. Trans. B 54 (2023) 593–601.

  21. M. Kawakami, T. Takenaka, M. Ishikawa, Ironmak. Steelmak. 29 (2002) 287–292.

    Article  Google Scholar 

  22. Z.H. Jiang, Y.W. Dong, X. Geng, Electroslag metallurgy, Science Press, Beijing, China, 2015.

    Google Scholar 

  23. M. Kato, K. Hasegawa, S. Nomura, M. Inouye, ISIJ Int. 23 (1983) 618–627.

    Article  Google Scholar 

  24. H.Y. Jiang, Metallurgical electrochemistry, Metallurgical Industry Press, Beijing, China, 1983.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 52074002 and 51974002) and Natural Science Foundation of Anhui Province (Grant No. 2208085J37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-fang Shi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Yl., Jin, T., Wang, Y. et al. Effect of slag composition and current density on ingot cleanliness during low-frequency/DC electroslag process. J. Iron Steel Res. Int. 30, 2219–2228 (2023). https://doi.org/10.1007/s42243-023-01035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01035-y

Keywords

Navigation