Skip to main content
Log in

Combined experimental and simulation study on corrosion behavior of B10 copper–nickel alloy welded joint under local turbulence

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The corrosion behavior of B10 copper–nickel alloy welded joints in seawater pipeline system was analyzed under local turbulence induced by weld residual height. The corrosion behavior was evaluated by array electrode technology, morphology and elemental characterization, and COMSOL Multiphysics simulation. The results provide a theoretical basis for the corrosion and leakage of B10 alloy in seawater pipeline under the action of turbulence. The results show that residual height-induced turbulence exhibits a significant effect on the corrosion behavior in different areas of welded joints in B10 alloy. Turbulence can damage some surfaces, causing polarity deflection followed by acceleration of corrosion, or it is easier to form a protective film to slow down corrosion. COMSOL Multiphysics results show that the shear rate and turbulent kinetic energy increase linearly with the increase in residual height and velocity. The corrosion behavior of alloy surface is influenced by controlling the mass transfer rate and surface state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Z. Wang, Z. Zhou, W. Xu, D. Yang, Y. Xu, L. Yang, J. Ren, Y. Li, Y. Huang, Environ. Sci. Pollut. Res. 28 (2021) 54403–54428.

    Article  Google Scholar 

  2. D. Zhang, R. Liu, Y. Liu, S. Xing, L. Yang, E. Wei, X. Dou, Sci. Rep. 12 (2022) 2164.

    Article  Google Scholar 

  3. B.Z. Sun, W.J. Liao, Z. Li, Z.Y. Liu, C.W. Du, Anti-Corros. Met. Mater. 66 (2019) 286–293.

    Google Scholar 

  4. F. Mansfeld, G. Liu, G. Xiao, Corros. Sci. 36 (1994) 2063–2095.

    Article  Google Scholar 

  5. J.D. Yang, F.L. Xu, in: H. Zhou (Eds.), Proceedings of Material Engineering and Mechanical Engineering (MEME2015), World Scientific, Hangzhou, China, 2015, pp. 1275–1282. https://doi.org/10.1142/9789814759687_0143.

  6. O.O. Ekerenam, A. Ma, Y. Zheng, W. Emori, J. Mater. Eng. Perform. 26 (2017) 1701–1716.

    Article  Google Scholar 

  7. N. Li, W. Zhang, T. Jin, Y. Zhao, W. Dai, in: 2018 Prognostics and System Health Management Conference (PHM-Chongqing), IEEE, Chongqing, China, 2019, pp. 1149–1153.

    Google Scholar 

  8. B. Jegdić, B. Bobić, B. Radojković, B. Alić, L. Radovanović, J. Mater. Process. Technol. 266 (2019) 579–587.

    Article  Google Scholar 

  9. S.J. Kim, G.Y. Kim, C.Y. Oh, S. Song, Met. Mater. Int. 28 (2022) 2448–2461.

    Article  Google Scholar 

  10. S. Tokita, K. Kadoi, S. Aoki, H. Inoue, Corros. Sci. 175 (2020) 108867.

    Article  Google Scholar 

  11. Y.W. Xu, X.Q. Hou, Y. Shi, W.Z. Zhang, Y.F. Gu, C.G. Feng, K. Volodymyr, Corros. Sci. 191 (2021) 109729.

    Article  Google Scholar 

  12. R. Liu, Y. Liu, D. Zhang, Front. Mater. 9 (2022) 910319.

    Article  Google Scholar 

  13. D. Zhang, L. Yang, Z. Tan, S. Xing, S. Bai, E. Wei, X. Tang, Y. Jin, Exp. Therm. Fluid Sci. 124 (2021) 110333.

    Article  Google Scholar 

  14. Z. Tan, L. Yang, D. Zhang, Z. Wang, F. Cheng, M. Zhang, Y. Jin, J. Mater. Sci. Technol. 49 (2020) 186–201.

    Article  Google Scholar 

  15. K. Chandra, V. Kain, S.K. Sinha, H.G. Gujar, Eng. Fail. Anal. 116 (2020) 104756.

    Article  Google Scholar 

  16. Y. Chen, S. Dong, Z. Zang, M. Gao, H. Zhang, C. Ao, H. Liu, S. Ma, H. Liu, Eng. Fail. Anal. 123 (2021) 105266.

    Article  Google Scholar 

  17. I.A. Chaves, R.E. Melchers, Corros. Sci. 53 (2011) 4026–4032.

    Article  Google Scholar 

  18. T.J. Liu, H.P. Chen, W.F. Zhang, W.T. Lou, J. Mater. Eng. 45 (2017) No. 5, 31–37.

    Google Scholar 

  19. S. Hu, R. Liu, L. Liu, Y. Cui, E.E. Oguzie, F. Wang, Corros. Sci. 163 (2020) 108242.

    Article  Google Scholar 

  20. L. Yang, Z. Ma, Y. Zheng, X. Wang, Y. Huang, K. Wang, S.Y. Song, W. Jin, Appl. Sci. 11 (2021) 8278.

    Article  Google Scholar 

  21. F. Stern, Z. Wang, J. Yang, H. Sadat-Hosseini, M. Mousaviraad, S. Bhushan, M. Diez, Y. Sung-Hwan, P.C. Wu, S.M. Yeon, T. Dogan, D.H. Kim, S. Volpi, M. Conger, T. Michael, T. Xing, R.S. Thodal, J.L. Grenestedt, J. Hydrodyn. 27 (2015) 1–23.

    Article  Google Scholar 

  22. S. Wang, J. Zhao, Y. Gu, D. Xiong, Q. Zeng, B. Tian, J. Solid State Electrochem. 25 (2021) 993–1006.

    Article  Google Scholar 

  23. Y.X. Lu, X. Li, H.Y. Jing, L.Y. Xu, Y.D. Han, Transactions of the China Welding Institution 39 (2018) No. 5, 10–14.

    Google Scholar 

  24. G. Zhang, L. Zeng, H. Huang, X. Guo, Corros. Sci. 77 (2013) 334–341.

    Article  Google Scholar 

  25. S.X. Zhang, K.X. Song, X.H. Guo, Y.M. Zhang, X.M. Li, Special Casting & Nonferrous Alloys 36 (2016) 669–672.

    Google Scholar 

  26. Y. Zhao, L. Lin, D. Cui, Chin. J. Nonferrous Met. 15 (2005) 1786–1794.

    Google Scholar 

  27. X. Wu, L. Huang, Q. Sun, Mater. Protect. 54 (2021) 36.

    Google Scholar 

  28. R. Barker, X. Hu, A. Neville, Tribol. Int. 68 (2013) 17–25.

    Article  Google Scholar 

  29. Z. Dai, S.M. Shen, X.J. Hao, L.Y. Shen, in: 7th Fracture Mechanics Symposium (FM 2009), Shanghai, China, 2009, pp. 425–429.

  30. V. Subramanian, P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Corros. Sci. 49 (2007) 620–636.

    Article  Google Scholar 

  31. T. Hodgkiess, G. Vassiliou, Desalination 183 (2005) 235–247.

    Article  Google Scholar 

  32. F. Laadhari, Physics of Fluids 14 (2002) L65–L68.

    Article  Google Scholar 

  33. L. Wenhong, L. Lei, Z. Pang, J.J. Yu, J.D. Yu, J. Chin. Soc. Corros. Protect. 31 (2011) 160–164.

    Google Scholar 

  34. X.Y. Yong, Y.Q. Zhang, D.L. Li, J. Ji, Y.X. Qu, J.D. Wang, Corros. Sci. Protect. Technol. 23 (2011) 245–250.

    Google Scholar 

  35. G. Zhang, Y.F. Cheng, Corros. Sci. 52 (2010) 2716–2724.

    Article  Google Scholar 

  36. M. Ahmed, N. Talib, L. Al-Gebory, J. Information Sci. Eng. 36 (2020) 217–229.

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 42176209), the Natural Science Foundation of Shandong Province (Grant No. ZR2021MD064), and the Fundamental Research Funds for the Central Universities (Grant No. 19CX05001A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-lei Zhang or Shao-hua Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Dl., Liu, R., Liu, Ys. et al. Combined experimental and simulation study on corrosion behavior of B10 copper–nickel alloy welded joint under local turbulence. J. Iron Steel Res. Int. 30, 1598–1612 (2023). https://doi.org/10.1007/s42243-023-01032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01032-1

Keywords

Navigation