Skip to main content
Log in

Impact wear properties of dissimilar joints between bainitic frogs and pearlite rails

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75V rail before and after normalizing treatment were studied by cyclic impact tests. The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles. The main wear mechanisms include pitting wear, mild fatigue wear, delamination wear, and fatigue wear, and plastic deformation was the primary impact wear mechanism. Among them, fatigue wear had the greatest influence on wear volume, while other wear mechanisms had limited effect. The impact wear resistance of the base material was better than that of the heat-affected zone. Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery, grain refinement, and uniform distribution of grains. The martensite generated in the rail welded joints aggravated the impact wear damage to the materials, which should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Messaadi, M. Oomen, A. Kumar, Tribol. Int. 140 (2019) 105857.

    Article  CAS  Google Scholar 

  2. M.N. Georgiev, T.V. Simeonova, Met. Sci. Heat Treat. 60 (2018) 464–470

    Article  CAS  ADS  Google Scholar 

  3. A. Królicka, K. Radwański, R. Kuziak, T. Zygmunt, A. Ambroziak, J. Constr. Steel Res. 175 (2020) 106372.

    Article  Google Scholar 

  4. S. Parzych, Arch. Metall. Mater. 62 (2017) 2147–2151.

    Article  CAS  Google Scholar 

  5. O. Hajizad, A. Kumar, Z. Li, R.H. Petrov, J. Sietsma, R. Dollevoet, Metals 9 (2019) 778.

    Article  CAS  Google Scholar 

  6. G. Xiao, X. Xiao, J. Guo, Z. Wen, X. Jin, Acta Mech. Sin. 26 (2010) 449–465.

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Xu, P. Wang, Y. Gao, J. Chen, R. Chen, Eng. Fail. Anal. 81 (2017) 31–44.

    Article  Google Scholar 

  8. W.J. Jiang, C. Liu, C.G. He, J. Guo, W.J. Wang, Q.Y. Liu, Wear 376–377 (2017) 1938–1946.

    Article  Google Scholar 

  9. P. Xiang, W. Jiang, H. Ding, W. Wang, J. Guo, Q. Liu, Tribology 41 (2021) 382–391.

    CAS  Google Scholar 

  10. W. Li, K. Chang, P. Zeng, C. Zuo, Tribol. Trans. 64 (2021) 644–657.

    Article  CAS  Google Scholar 

  11. A. Allie, H. Aglan, M. Fateh, Metall. Mater. Trans. A 42 (2011) 2706–2715.

    Article  CAS  Google Scholar 

  12. Q. Zhang, L. Li, W. Ding, H.T. Song, Z.K. Gao, Key Eng. Mater. 723 (2016) 406–411.

    Article  Google Scholar 

  13. L. Xin, W. Dong, Spec. Steel Technol. 26 (2020) 39–42.

    Google Scholar 

  14. X. Wang, A. Wei, G. Hao, Steel Constr. 6 (2016) 80–82.

    Google Scholar 

  15. Z. Wang, H. Xu, H. Wang, Rail Eng. 59 (2019) 144–147.

    Google Scholar 

  16. H. Wang, Y. Sun, Z. Gao, H. Xu, J. Dalian Jiaotong Univ. 40 (2019) No. 5, 72–75.

    Google Scholar 

  17. X. Wang, F.C. Zhang, B. Lv, C.L. Zhang, Trans. China Weld. Inst. (2009) No. 12, 61–64.

  18. W. Zhai, China Rail W. Soc. 17 (1995) 28–33.

    Google Scholar 

  19. Q. Wang, Z. Hu, M. Zhang, Y. Zhou, J. Liu, H. Chen, Adv. Mater. Res. 652–654 (2013) 2274–2278.

    Article  Google Scholar 

  20. Y. Mu, P. Xu, Y. Liang, S. Xiang, C. Yin, Mater. Sci. Eng. A 851 (2022) 143642.

    Article  CAS  Google Scholar 

  21. L.P. Nishikawa, H. Goldenstein, JOM 71 (2019) 815–823.

    Article  CAS  Google Scholar 

  22. K. Wang, Z. Tan, G. Gao, X. Gui, R.D. Misra, B. Bai, Mater. Sci. Eng. A 662 (2016) 162–168.

    Article  CAS  Google Scholar 

  23. H. Mousalou, S. Yazdani, B. Avishan, N.P. Ahmadi, A. Chabok, Y. Pei, Mater. Sci. Eng. A 734 (2018) 329–337.

    Article  CAS  Google Scholar 

  24. H. Ding, J. Dai, T. Dai, Y. Sun, T. Lu, M. Li, X. Jia, D. Huang, Surf. Coat. Technol. 399 (2020) 126122.

    Article  CAS  Google Scholar 

  25. L. Lan, C. Qiu, D. Zhao, X. Gao, L. Du, Mater. Sci. Eng. A 529 (2011) 192–200.

    Article  CAS  Google Scholar 

  26. S.Q. Wang, M.X. Wei, F. Wang, X.H. Cui, C. Dong, Tribol. Lett. 32 (2008) 67–72.

    Article  Google Scholar 

  27. X.J. Zhao, J. Guo, Q.Y. Liu, E. Butini, L. Marini, E. Meli, A. Rindi, W.J. Wang, Tribol. Int. 127 (2018) 520–532.

    Article  Google Scholar 

  28. S. Wang, Q. Cui, J. Zou, Z. Zhang, Wear 462–463 (2020) 203492.

    Article  Google Scholar 

  29. M. Lindroos, M. Apostol, V.T. Kuokkala, A. Laukkanen, K. Valtonen, K. Holmberg, O. Oja, Int. J. Impact Eng. 78 (2015) 114–127.

    Article  Google Scholar 

  30. J. Wu, S. Zou, Y. Zhang, S. Gong, G. Sun, Z. Ni, Z. Cao, Z. Che, A. Feng, Surf. Coat. Technol. 328 (2017) 283–291.

    Article  CAS  Google Scholar 

  31. S. Zhang, S. Romo, R. Giorjão, P.B.P. Leão, A. Ramirez, Mater. Charact. 193 (2022) 112293.

    Article  CAS  Google Scholar 

  32. Q. Li, Y. Zhang, H. Luo, Wear 518 (2023) 204644.

    Article  Google Scholar 

  33. R.R. Porcaro, G.L. Faria, L.B. Godefroid, G.R. Apolonio, L.C. Cândido, E.S. Pinto, J. Mater. Process. Technol. 270 (2019) 20–27.

    Article  CAS  Google Scholar 

  34. J. Lu, H. Yu, P. Kang, X. Duan, C. Song, Wear 414 (2018) 21–30.

    Article  Google Scholar 

  35. L. Lan, C. Qiu, D. Zhao, X. Gao, L. Du, Mater. Sci. Eng. A 558 (2012) 592–601.

    Article  CAS  Google Scholar 

  36. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 478 (2008) 26–37.

    Article  Google Scholar 

  37. L. Gong, L. Zhu, H. Zhou, Key Engineering Materials 737 (2017) 90–94.

    Article  Google Scholar 

  38. S. Lin, H. Dai, S. Zhou, Y. Zhong, Hot Work. Technol. 45 (2016) 183–191.

    Google Scholar 

  39. X. Shi, F. Zhang, M. Zhang, M. Wang, C. Zheng, China Weld. Inst. 36 (2015) 9–13+18+113.

  40. H.T. Song, L.M. Wang, Y.M. Jia, Z.K. Gao, Mater. Heat Treat. 41 (2012) No. 10, 172–174+188.

  41. R. Guan, C. Ji, T.C. Chen, M. Zhu, H. Li, Metall. Mater. Trans. B 52 (2021) 3220–3234.

    Article  CAS  Google Scholar 

  42. X. Liu, C. Xiao, P.A. Meehan, Wear 438–439 (2019) 203073.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Project (2017YFB0304500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-yu Zhang or Wei Li.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Py., Zuo, Cg., Zhang, Xy. et al. Impact wear properties of dissimilar joints between bainitic frogs and pearlite rails. J. Iron Steel Res. Int. 31, 275–287 (2024). https://doi.org/10.1007/s42243-023-01020-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01020-5

Keywords

Navigation