Skip to main content
Log in

Heat distribution model under hydrogen-rich low-carbon conditions in blast furnace

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Low carbon development of blast furnaces is one of the key technological directions in the current development of ironmaking. Owing to the differences in the physical and chemical properties of hydrogen and carbon, hydrogen-rich media entering a blast furnace will change the heat distribution, thus affecting the stability of production. Accordingly, a heat distribution model was proposed to study the temperature distribution in a blast furnace, simultaneously considering gas–solid heat exchange, slag and iron melting, and chemical reactions. The model was used to analyze the temperature distribution of a 2300 m3 blast furnace and was verified via comparison with actual production data. Subsequently, the effects of the injection rate of hydrogen-rich media, H2 concentration, and oxygen enrichment rate of the blast on the temperature distribution were investigated. Results indicated that the increase in the injection rate of the hydrogen-rich media decreased the amount of direct reduction and led to an increase in the furnace temperature. Furthermore, an increase in the oxygen enrichment rate led to a decrease in the furnace temperature, but could reduce the solid fuel ratio, while the change in H2 concentration had less effect on the temperature distribution. The combination of hydrogen-rich media injection and the increase in the oxygen enrichment rate would help to adjust the temperature distribution to the same level as the conventional blast furnace conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Nogami, Y. Kashiwaya, D. Yamada, ISIJ Int. 52 (2012) 1523–1527.

    Article  CAS  Google Scholar 

  2. F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, M.J. Xu, J. Iron Steel Res. Int. 28 (2021) 1212–1222.

    Article  CAS  Google Scholar 

  3. A. Murao, K. Fukada, M. Sato, H. Matsuno, Y. Saito, S. Akaotsu, Y. Matsushita, H. Aoki, ISIJ Int. 59 (2019) 2165–2173.

    Article  CAS  Google Scholar 

  4. Y. Kashihara, Y. Sawa, M. Sato, ISIJ Int. 52 (2012) 1979–1985.

    Article  CAS  Google Scholar 

  5. S.L. Yaroshevskii, Pig iron smelting using pulverized coal injection, Metallurgiya, Moscow, 1988, 176.

    Google Scholar 

  6. J.C. Agarwal, F.C. Brown, D.L. Chin, G.S. Stevens, D.M. Smith, in: 58th Ironmaking Conference Proceedings, Iron and Steel Society, Warrendale, USA, 1999, pp. 105–134.

    Google Scholar 

  7. A. Babich, S. Yaroshevskii, A. Formoso, A. Cores, L. Garcia, V. Nozdrachev, ISIJ Int. 39 (1999) 229–238.

    Article  CAS  Google Scholar 

  8. A. Babich, D. Senk, H.W. Gudenau, Ironmaking, Stahleisen GmbH, Düsseldorf, Germany, 2016.

  9. T.L. Guo, M.S. Chu, Z.G. Liu, J. Tang, J.I. Yagi, Steel Res. Int. 84 (2013) 333–343.

    Article  CAS  Google Scholar 

  10. A. Abdelrahim, M. Iljana, M. Omran, T. Vuolio, H. Bartusch, T. Fabritius, ISIJ Int. 60 (2020) 2206–2217.

    Article  CAS  Google Scholar 

  11. L. Shao, Q. Wang, Y. Qu, H. Saxén, Z. Zou, Metall. Mater. Trans. B 52 (2021) 451–459.

    Article  CAS  Google Scholar 

  12. A.H. Pamm, Computational analysis of modern blast furnace processes, Metallurgical Industry Press, Beijing, China, 1981.

    Google Scholar 

  13. G. Danloy, J. van der Stel, P. Schmöle, Heat and mass balances in the ULCOS blast furnace, in: Proceedings of the 4th ULCOS seminar, 2008, pp. 2.

  14. Y. Han, J. Wang, Y. Li, X. She, L. Kong, Q. Xue, Chin. J. Eng. 33 (2011) 1280–1286.

    Google Scholar 

  15. J. Jiménez, J. Mochón, J. Sainz de Ayala, F. Obeso, ISIJ Int. 44 (2004) 573–580.

    Article  Google Scholar 

  16. Z.Q. Hao, X.C. Li, Q. Wang, J. Iron Steel Res. 12 (2000) No. S1, 81–84.

    CAS  Google Scholar 

  17. C. Yilmaz, T. Turek, J. Clean. Prod. 164 (2017) 1519–1530.

    Article  CAS  Google Scholar 

  18. N. Barrett, S. Mitra, H. Doostmohammadi, D. O’dea, P. Zulli, S. Chew, T. Honeyands, ISIJ Int. 62 (2022) 1168–1177.

    Article  CAS  Google Scholar 

  19. H. Helle, M. Helle, H. Saxén, Chem. Eng. Sci. 66 (2011) 6470–6481.

    Article  CAS  Google Scholar 

  20. B. Desai, R.V. Ramna, J.M. Sathaye, Ironmak. Steelmak. 35 (2008) 43–50.

    Article  CAS  Google Scholar 

  21. M. Jampani, J. Gibson, P.C. Pistorius, Metall. Mater. Trans. B 50 (2019) 1290–1299.

    Article  CAS  Google Scholar 

  22. C. Zhou, Handbook of blast furnace iron production technology, Metallurgical Industry Press, Beijing, China, 2021.

    Google Scholar 

  23. V. Shatokha, Int. J. Miner. Metall. Mater. 29 (2022) 1851–1861.

    Article  CAS  Google Scholar 

  24. J. Gao, Principles of momentum, heat and mass transfer, Chongqing University Press, Chongqing, China, 1987.

    Google Scholar 

  25. J.C. Agarwal, F.C. Brown, D.L. Chin, G.S. Stevens, D.M. Smith, in: 57th Ironmaking Conference Proceedings, Iron and Steel Society, Warrendale, USA, 1998, pp. 1–100.

    Google Scholar 

  26. H. Nie, A. Yu, L. Jiao, X. Mao, H. Xu, S. Kuang, Metall. Mater. Trans. B 53 (2022) 2712–2734.

    Article  CAS  Google Scholar 

  27. P. Jin, Z. Jiang, C. Bao, Y. Lu, J. Zhang, X. Zhang, Chin. J. Eng. 37 (2015) 499–508.

    CAS  Google Scholar 

  28. J.C. Agarwal, F.C. Brown, D.L. Chin, G.S. Stevens, D.M. Smith, W.G. Sherwood Jr., in: 58th Ironmaking Conference Proceedings, Iron and Steel Society, Warrendale, USA, 1999, pp. 143–163

    Google Scholar 

  29. Y. Chen, H. Zuo, Ironmak. Steelmak. 48 (2021) 749–768.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Key R&D Program of China (Grant No. 2019YFC1905701) and the Chongqing Young Talent Program (Grant No. cstc2022ycjh-bgzxm0172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xu, J., He, K. et al. Heat distribution model under hydrogen-rich low-carbon conditions in blast furnace. J. Iron Steel Res. Int. 31, 584–594 (2024). https://doi.org/10.1007/s42243-023-01018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01018-z

Keywords

Navigation