Skip to main content
Log in

Agglomeration and bonding mechanism of typical metallurgical solid wastes

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The agglomeration of solid wastes is a key factor for subsequent utilization, while the difficulty in agglomeration and high cost have become common problems in the recycling process. The disk pelletizing process was adopted, based on the optimization method by liquid binder addition, and the influence mechanism of the ratio of typical solid wastes as blast furnace dust (BFD) and sludge generated by oxygen converter gas recovery (OGS) was explored. Meanwhile, the effect of binder solution concentration on the quality of green pellets was studied. Derived from the contact angle detection and infrared spectrum analysis, the liquid bridge model was established to study the bonding mechanism. The results showed that OGS had stronger adsorption effect with binder, and the hydrophilicity of BFD was better. When the concentration of binder was higher than 0.2 wt.%, the contact angle between the binder and BFD was bigger than that with OGS, while the capillary force between particles reduced with larger contact angle. The increment in the binder concentration increased the viscous force between particles and the maximum separation distance. The ultimate drop strength and compressive strength were related to the type of viscous force, and the compressive strength reflected the strength of the force between particles intuitively, while the drop strength represented the comprehensive forces of green pellets. Reasonable combination of BFD and OGS was available for pelletizing process, while the ratio of BFD should not exceed 32.0%, and binder C was added in the form of solution with the addition amount of 0.4 wt.%, which can reduce the cost of binder by 20–30 ¥/t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.L. Yao, W. Wu, Y. Yang, Q. He, H.D. Meng, T.C. Lin, J. Iron Steel Res. 34 (2022) 505–513.

    Google Scholar 

  2. Y.L. Jin, Y.J. Sun, Q. Wang, Hebei Metallurgy 43 (2022) No. 5, 61–64+86.

  3. Z.J. Liu, J.B. Wang, J.L. Zhang, J. Iron Steel Res. 35 (2023) 1–10.

    Google Scholar 

  4. Y.F. Wang, L. Ding, Q. Shi, S. Liu, L.X. Qian, Z.W. Yu, Chem. Eng. J. (2022) https://doi.org/10.1016/J.CEJ.2022.137601.

  5. Q. Zhang, T. Xiang, S.S. Tian, J. Iron Steel Res. 35 (2023) 375–384.

    Google Scholar 

  6. H.Y. He, H.L. Liu, Y.F. Cui, Y. Li, J. Ding, J. Iron Steel Res. 33 (2021) 196–201.

    Google Scholar 

  7. L.B. Yang, J.X. Li, J.L. Yang, R.F. Wei, Q.M. Meng, H.M. Long, Iron and Steel 52 (2017) No. 10, 13–19.

    Google Scholar 

  8. Y.L. Zhou,Y.B. Zhang, P.P. Liu, J. Cent. South Univ. 22 (2015) 1247–1255.

    Article  Google Scholar 

  9. Z.L. Zuo, Q.B. Yu, H.Q. Xie, K. Wang, S.H. Liu, F.Yang, Q. Qin, Z.F. Qi, Renewable Energy 125 (2018) 206–224.

    Article  Google Scholar 

  10. G. Zoubari, R. Ali, A. Dashevskiy, J. Drug Deliv. Sci. Technol. 49 (2019) 1–5.

    Article  Google Scholar 

  11. O. Sivrikaya, A.I. Arol, Ironmak. Steelmak. 40 (2013) 1–8.

    Article  Google Scholar 

  12. H.X. Zhao, F.S. Zhou, A.E. L.M., J.L. Liu, Y. Zhou, J. Hazard. Mater. 423 (2022) 127056.

  13. Djomdi, H. Fadimatou, B. Hamadou, L.J. Mintsop Nguela, G. Christophe, P. Michaud, Energy Convers. Manage. X 12 (2021) 100132.

  14. X.H. Fan, Y. Wang, M. Gan, L.S. Yuan, L.Q. Dai, G.G. Zhao, J. Iron Steel Res. 20 (2008) No. 5, 5–8+19.

  15. A.B. Kotta, A. Patra, M. Kumar, S.K. Karak, Int. J. Miner. Metall. Mater. 26 (2019) 41–51.

    Article  Google Scholar 

  16. V.M. Chizhikova, R.M. Vainshtein, S.N. Zorin, T.I. Zainetdinov, G.A. Zinyagin, A.A. Shevchenko, Metallurgist 47 (2003) 141–146.

    Article  Google Scholar 

  17. Y.F. Huang, G.H. Han, T. Jiang, Y.B. Zhang, G.H. Li, Miner. Process. Extr. Metall. Rev. 34 (2013) 42–56.

    Article  Google Scholar 

  18. S. Liu, Y.B. Zhang, Z.J. Su, T. Jiang, Materials 15 (2022) 6999.

    Article  Google Scholar 

  19. H.P. Li, B. Li, S.S. Zhang, J.H. Zou, J. Cent. South Univ. 19 (2012) 1817–1822.

    Article  Google Scholar 

  20. O. Sivrikaya, A.I. Arol, HOLOS 3 (2014) 94–103.

    Article  Google Scholar 

  21. Y.B. Yang, Q.Q. Duan, Q. Li, B.X. Xu, T. Jiang, J. Iron Steel Res. 34 (2022) 101–110.

    Google Scholar 

  22. C.X. Li, R.C. Ren, J. Liu, J.L. Wang, D. Man, Bulletin of the Chinese Ceramic Society 30 (2011) 809–812.

    Google Scholar 

  23. Y.B. Zhang, X.Z. Ouyang, M.M. Lu, Z.J. Su, B.B. Liu, Sinter. Pelletiz. 43 (2018) No. 4, 27–32.

    Google Scholar 

  24. H.P. Li, Y.H. Hu, D.Z. Wang, J. Xu, J. Cent. South Univ. Technol. 11 (2004) 291–294.

    Article  Google Scholar 

  25. Y. Zhou, Y. Zhang, G. Li, Y. Wu, T. Jiang, Powder Technol. 271 (2015) 155–166.

    Article  Google Scholar 

  26. B. Saha, A.S. Patra, A.K. Mukherjee, I. Paul, J. Mol. Graphics Modell. 102 (2021) 107787.

    Article  Google Scholar 

  27. S.K. Kawatra, V. Claremboux, Miner. Process. Extr. Metall. Rev. 43 (2022) 813–832.

    Article  Google Scholar 

  28. V.D. Jovanović, D.N. Knežević, , Ž.T. Sekulić, M.M. Kragović, J.N. Stojanović, S.R. Mihajlović, M.M. Petrov, Hem. Ind. 71 (2017) 135–144.

    Article  Google Scholar 

  29. Y.B. Zhang, M.M. Lu, Z.J. Su, J. Wang, Y.K. Tu, X.J. Chen, C.T. Cao, F.Q. Gu, S. Liu, T. Jiang, Appl. Clay Sci. 180 (2019) 105177.

    Article  Google Scholar 

  30. L. Laura, T. Christoph, R. Wollenberg, H.W. Schröder, A. Siegfried Braeuer, Steel Res. Int. 92 (2021) 2100210.

  31. G. Zhang, Y. Sun, Y. Xu, Renew. Sustain. Energy Rev. 82 (2018) 477–487.

    Article  Google Scholar 

  32. O.I. Vinogradova, F. Feuillebois, J. Colloid Interface Sci. 221 (2000) 1–12.

    Article  Google Scholar 

  33. G. Qiu, T. Jiang, H. Li, D. Wang, Colloids Surf. A Physicochem. Eng. Aspects 224 (2003) 11–22.

    Article  Google Scholar 

  34. V. Claremboux, S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 44 (2023) 138–154.

    Article  Google Scholar 

  35. S. Kumar, S.K. Suman, Trans. Indian Inst. Met. 71 (2018) 1629–1634.

    Article  Google Scholar 

  36. G. Han, Y. Huang, G. Li, Y. Zhang, T. Jiang, Miner. Process. Extr. Metall. Rev. 35 (2014) 1–14.

  37. O. Pitois, P. Moucheront, X. Chateau, J. Colloid Interface Sci. 231 (2000) 26–31.

    Article  Google Scholar 

  38. A. Depalo, A.C. Santomaso, Colloids Surf. A Physicochem. Eng. Aspects 436 (2013) 371–379.

    Article  Google Scholar 

  39. A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22 (1967) 653–660.

    Article  Google Scholar 

  40. G. Barnocky, R.H. Davis, J. Fluid Mech. 209 (1989) 501–519.

    Article  Google Scholar 

  41. C. Thornton, K.K. Yin, M.J. Adams, J. Phys. D: Appl. Phys. 29 (1996) 424–435.

    Article  Google Scholar 

  42. C. Thornton, M.T. Ciomocos, M.J. Adams, Powder Technol. 140 (2004) 258–267.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Outstanding Youth Fund of Anhui Province (Grant No. 2208085J19) and the National Key Research and Development Program of China (Grant No. 2022YFC3901405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ming Long.

Ethics declarations

Conflict of interest

Hong-ming Long is an editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. We declare that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Kong, Yq., Zhang, Jc. et al. Agglomeration and bonding mechanism of typical metallurgical solid wastes. J. Iron Steel Res. Int. 30, 1390–1400 (2023). https://doi.org/10.1007/s42243-023-01012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01012-5

Keywords

Navigation