Skip to main content
Log in

Effect of pH and applied stress on hydrogen sulfide stress corrosion behavior of HSLA steel based on electrochemical noise analysis

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence mechanism of pH and the externally applied stress on sulfide stress corrosion cracking behavior based on the joint analysis of the in situ electrochemical noise and microstructure was studied. The results showed that \({\mathrm{H}}^{+}\) in solution changes the composition and structure of corrosion product film by affecting the concentration of \({\mathrm{S}}^{2-}\) and \({\mathrm{Fe}}^{2+}\) near the anode surface. When the pH increased from 2.6 to 3.6 and 4.6, the corrosion product film changed from porous Mackinawite to dense and stable FeS. The change in corrosion product type delayed the crack initiation time by 10.5 and 45.5 h, while the uniform corrosion time was prolonged by 6.1 and 46 h, respectively, delaying SSC behavior. After increasing the applied stress, the local plastic deformation on the material surface increases the porosity and crack rate of the corrosion product film and becomes a fast propagation channel for SSC cracks. When the applied stress is 110% of the actual yield strength of the material, the initiation time of stress corrosion cracking is 6 and 18.1 h earlier than that of 90% and 100%, respectively. The local corrosion time was extended by 23.5 and 8.2 h, respectively, accelerating SSC behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Ghosh, P. Rostron, R. Garg, A. Panday, Eng. Fract. Mech. 199 (2018) 609–618.

    Article  Google Scholar 

  2. M. Askari, M. Aliofkhazraei, S. Afroukhteh, J. Nat. Gas Sci. Eng. 71 (2019) 102971.

    Article  Google Scholar 

  3. X.L. Wen, P.P. Bai, B.W. Luo, S.Q. Zheng, C.F. Chen, Corros. Sci. 139 (2018) 124–140.

    Article  Google Scholar 

  4. H. Asahi, Y. Sogo, M. Ueno, H. Higashiyama, Corrosion 45 (1989) 519–527.

    Article  Google Scholar 

  5. M. Kimura, N. Totsuka, T. Kurisu, K. Amano, J. Matsuyama, Y. Nakai, Corrosion 45 (1989) 340–346.

    Article  Google Scholar 

  6. RA. Carneiro, RC. Ratnapuli, VD. Lins, Mater. Sci. Eng. A 357 (2003) 104–110.

    Article  Google Scholar 

  7. Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo, Science 367 (2020) 171–175.

    Article  Google Scholar 

  8. S.D. Pu, S.W. Ooi, Mater. Sci. Eng. A 761 (2019) 138059.

    Article  Google Scholar 

  9. M.C. Zhao, K. Yang, Scripta Mater. 52 (2005) 881–886.

    Article  Google Scholar 

  10. X.H. Li, C.X. Liu, B. He, C.T. Lv, Z.M. Gao, Y.C, Liu, J. Iron Steel Res. Int. 29 (2022) 1836–1845.

    Article  Google Scholar 

  11. J. Shimamura, D. Izumi, I. Samusawa, S. Igi, ISIJ Int. 62 (2022) 740–749.

    Article  Google Scholar 

  12. W.T. Tsai, M.S. Chen, Corros. Sci. 42 (2000) 545–559.

    Article  Google Scholar 

  13. S. Hashizume, Y. Inohara, in: CORROSION 2000, NACE international, Orlando, Florida, USA, 2000, pp. NACE–00130.

  14. M.C. Zhao, M. Liu, A. Atrens, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 478 (2008) 43–47.

    Article  Google Scholar 

  15. X.H. Li, J. Song, K.F. Gan, D.H. Xia, Z.M. Gao, C.X. Liu, Y.C. Liu, J. Electroanal. Chem. 876 (2020) 114480.

    Article  Google Scholar 

  16. T. Haase, J. SchrÖder, C. Bosch, C. Kalwa, in: CORROSION 2018, NACE International, Phoenix, Arizona, USA, 2018, pp. NACE-2018–10669.

  17. K.E. Szklarz, in: CORROSION 2011, NACE International, Houston, Texas, USA, 2011, pp. NACE-11098.

  18. S. Tsujikawa, A. Miyasaka, M. Ueda, S. Ando, T. Shibata, T. Haruna, M. Katahira, Y. Yamane, T. Aoki, T. Yamada, Corrosion 49 (1993) 409–419.

    Article  Google Scholar 

  19. V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, R. Penelle, Scripta Mater. 52 (2005) 147–152.

    Article  Google Scholar 

  20. Q. Wang, Y. Sun, G.H. Shi, K. Meng, Q.F. Wang, F.C. Zhang, Corros. Sci. 165 (2020) 108387.

    Article  Google Scholar 

  21. J. Fabre-Pulido, R. Orozco-Cruz, E. Mejía-Sánchez, A. Contreras-Cuevas, R. Galvan-Martinez, ECS Transactions 94 (2019) 189–198.

    Article  Google Scholar 

  22. K. Hladky, J.L. Dawson, Corros. Sci. 21 (1981) 317–322.

    Article  Google Scholar 

  23. RA. Cottis, MAA. Al-Awadhi, H. Al-Mazeedi, S. Turgoose, Electrochim. Acta 46 (2001) 3665–3674.

    Article  Google Scholar 

  24. G. Montesperelli, G. Gusmano, F. Marchioni, Mater. Corros. 51 (2000) 537–544.

    Article  Google Scholar 

  25. Q. Hu, G.A. Zhang, Y.B. Qiu, X.P. Guo, Corros. Sci. 53 (2011) 4065–4072.

    Article  Google Scholar 

  26. J.X. Su, Z. Zhang, Y.Y. Shi, F.H. Cao, J.Q. Zhang, Mater. Corros. 57 (2006) 484–490.

    Article  Google Scholar 

  27. R.A. Cottis, Corrosion 57 (2001) 265–285.

    Article  Google Scholar 

  28. S.P. Ewing, Corrosion 11 (1955) 51–55.

    Article  Google Scholar 

  29. D.W. Shoesmith, P. Taylor, M.G. Bailey, D.G. Owen, J. Electrochem. Soc. 127 (1980) 1007–1015.

    Article  Google Scholar 

  30. G. Bell, G.L. Edgemon, S. Reid, in: CORROSION 98, NACE International, San Diego, California, USA, 1998, pp. NACE-98176.

  31. K. Hladky, J.L. Dawson, Corros. Sci. 22 (1982) 231–237.

    Article  Google Scholar 

  32. J.C. Uruchurtu, J.L. Dawson, Corrosion 43 (1987) 19–26.

    Article  Google Scholar 

  33. J. Flis, J.L. Dawson, J. Gill, G.C. Wood, Corros. Sci. 32 (1991) 877–892.

    Article  Google Scholar 

  34. C. Ma, S.Z. Song, Z.M. Gao, J.H. Wang, W.B. Hu, Y. Behnamian, D.H. Xia, Corros. Eng. Sci. Technol. 52 (2017) 432–440.

    Google Scholar 

  35. F.H. Cao, Z. Zhang, J.X. Su, Y.Y. Shi, J.Q. Zhang, Electrochim. Acta 51 (2006) 1359–1364.

    Article  Google Scholar 

  36. D.H. Xia, S.Z. Song, J. Li, W.X. Jin, Corros. Sci. Prot. Technol. 29 (2017) 581–585.

    Google Scholar 

  37. M. Pourbaix, Corrosion 26 (1970) 431–438.

    Article  Google Scholar 

  38. S.J. Zhang, Petrochem. Equip. Technol. 28 (2007) 35–38.

    Google Scholar 

  39. J. Robertson, M.I. Manning, Mater. Sci. Technol. 6 (1990) 81–92.

    Article  Google Scholar 

  40. Y.J. Jin, H. Lu, C. Yu, J.J. Xu, Mater. Charact. 84 (2013) 216–224.

    Article  Google Scholar 

  41. M. Koyama, Y. Onishi, H. Noguchi, Int. J. Fract. 206 (2017) 123–130.

    Article  Google Scholar 

  42. B. Beidokhti, A. Dolati, A.H. Koukabi, Mater. Sci. Eng. A 507 (2009) 167–173.

    Article  Google Scholar 

  43. B. Yan, S.H. Jiao, D.H. Zhang, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, Metz, France, 2014, pp. 012013.

  44. Z.P. Lu, T. Shoji, T. Dan, Y.B. Qiu, T. Yonezawa, Corros. Sci. 52 (2010) 2547–2555.

    Article  Google Scholar 

  45. T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov, S. Hashimoto, Mater. Sci. Eng. A 318 (2001) 122–128.

    Article  Google Scholar 

  46. G. Van Boven, W. Chen, R. Rogge, Acta Mater. 55 (2007) 29–42.

    Article  Google Scholar 

  47. W.F. Lu, C.L. Lai, J.Y. Huang, Mater. Trans. 55 (2014) 506–510.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (2022YFB3705300) and the National Natural Science Foundation of China (Nos. 52034004, 52271111 and 52171123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-xi Liu.

Ethics declarations

Conflict of interest

Chen-xi Liu is a youth editorial board member for Journal of Iron and Steel Research International and was not involved in the editorial review or the decision to publish this article. All authors disclosed no relevant relationships.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xh., Liu, Cx., Zhang, T. et al. Effect of pH and applied stress on hydrogen sulfide stress corrosion behavior of HSLA steel based on electrochemical noise analysis. J. Iron Steel Res. Int. 30, 2531–2540 (2023). https://doi.org/10.1007/s42243-023-00998-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00998-2

Keywords

Navigation