Skip to main content
Log in

High cycle fatigue behavior of titanium microalloyed high-strength beam steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The realization of an ideal combination of mechanical and fatigue properties is prerequisites for practical application of titanium (Ti) microalloyed steel in automotive field. The fatigue behavior of four Ti microalloyed high-strength beam steels with different Ti contents was systematically studied. The results show that the content of microalloying element Ti has a significant effect on the fatigue properties, especially in the steel with a high Ti content. For the experimental Ti microalloyed steel, inclusion-induced crack initiation is the main fatigue failure mode. Different from general fatigue fracture mechanism in Ti-contained steel, no TiN, which is the most detrimental to fatigue behavior, was found in fatigue crack initiation area. However, the large-sized TiN and oxide complex inclusion with a core–shell structure is the dominant cause of fatigue fracture. Because of the intense-localized deformation at the interface between complex inclusion and matrix, the angular TiN in the outer shell has a serious deteriorating effect on the fatigue properties, which is consistent with the result of the Kernel average misorientation map. Besides, the modification effect of a small amount of MnS on large-sized inclusion is not obvious and has little effect on the fatigue behavior. For more practical guidance, the critical inclusion sizes of the experimental steels were also investigated by experimental extrapolation method. With the increasing tensile strength, the inclusion sensitivity of the experimental steels increases, leading to the small critical inclusion size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Wang, M. Ryberg, Y. Yang, Nat. Commun. 12 (2021) 2066.

    Article  Google Scholar 

  2. P. Wolfram, S. Weber, K. Gillingham, Nat. Commun. 12 (2021) 7121.

    Article  Google Scholar 

  3. R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci. Technol. 70 (2021) 233–249.

    Article  Google Scholar 

  4. R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang, J. Mater. Sci. Technol. 70 (2021) 250–267.

    Article  Google Scholar 

  5. S. Wang, Z. Gao, G. Wu, X. Mao, Int. J. Miner. Metall. Mater. 29 (2022) 645–661.

    Article  Google Scholar 

  6. Y. Murakami, High and ultrahigh cycle fatigue, Elsevier, Oxford, UK, 2003.

    Book  Google Scholar 

  7. S. Nishida, Failure analysis in engineering applications, Butterworth Heinemann, Oxford, UK, 1992.

    Google Scholar 

  8. U. Zerbst, M. Madia, C. Klinger, D. Bettge, Y. Murakami, Eng. Fail. Anal. 97 (2019) 777–792.

    Article  Google Scholar 

  9. U. Zerbst, M. Madia, C. Klinger, D. Bettge, Y. Murakami, Eng. Fail. Anal. 98 (2019) 228–239.

    Article  Google Scholar 

  10. M.L. Zhu, L. Jin, F.Z. Xuan, Acta Mater. 157 (2018) 259–275.

    Article  Google Scholar 

  11. W. Hui, S. Chen, Y. Zhang, C. Shao, H. Dong, Mater. Des. 66 (2015) 227–234.

    Article  Google Scholar 

  12. T.N. Baker, Ironmak. Steelmak. 43 (2016) 264–307.

    Article  Google Scholar 

  13. P. Gong, X.G. Liu, A. Rijkenberg, W.M. Rainforth, Acta Mater. 161 (2018) 374–387.

    Article  Google Scholar 

  14. Y. Furuya, S. Matsuoka, Metall. Mater. Trans. A 33 (2002) 3421–3431.

    Article  Google Scholar 

  15. P. Wang, B. Wang, Y. Liu, P. Zhang, Y.K. Luan, D.Z. Li, Z.F. Zhang, Scripta Mater. 206 (2022) 114232.

    Article  Google Scholar 

  16. Y. Murakami, Effects of small defects and nonmetallic inclusions, Elsevier, Oxford, UK, 2002.

    Google Scholar 

  17. Y. Murakami, Metal fatigue: effects of small defects and nonmetallic inclusions, Elsevier, Oxford, UK, 2019.

    Google Scholar 

  18. Y. Zhenguo, Acta Metall. Sin. 41 (2005) 1136–1142.

    Google Scholar 

  19. J. Zhang, S. Li, Z. Yang, G. Li, W. Hui, Y. Weng, Int. J. Fatigue 29 (2007) 765–771.

    Article  Google Scholar 

  20. Z.G. Yang, G. Yao, G.Y. Li, S.X. Li, Z.M. Chu, W.J. Hui, H. Dong, Y.Q. Weng, Int. J. Fatigue 26 (2004) 959–966.

    Article  Google Scholar 

  21. L. Tang, C. Wu, Z. Zhang, J. Shang, C. Yan, Metals 6 (2016) 280.

    Article  Google Scholar 

  22. P. Zhao, G. Gao, R.D.K. Misra, B. Bai, Mater. Sci. Eng. A 630 (2015) 1–7.

    Article  Google Scholar 

  23. Q. Zhang, Y. Zhu, X. Gao, Y. Wu, C. Hutchinson, Nat. Commun. 11 (2020) 5198.

    Article  Google Scholar 

  24. G. Gao, Q. Xu, H. Guo, X. Gui, B. Zhang, B. Bai, Mater. Sci. Eng. A 739 (2019) 404–414.

    Article  Google Scholar 

  25. M.D. Sangid, Int. J. Fatigue 57 (2013) 58–72.

    Article  Google Scholar 

  26. C. Gu, W.Q. Liu, J.H. Lian, Y.P. Bao, Int. J. Miner. Metall. Mater. 28 (2021) 826–834.

    Article  Google Scholar 

  27. X. Gui, G. Gao, B. An, R.D.K. Misra, B. Bai, Mater. Sci. Eng. A 803 (2021) 140692.

    Article  Google Scholar 

  28. Z. Cao, Z. Shi, F. Yu, G. Wu, W. Cao, Y. Weng, Int. J. Fatigue 126 (2019) 1–5.

    Article  Google Scholar 

  29. C. Gu, Y.P. Bao, P. Gan, M. Wang, J.S. He, Int. J. Miner. Metall. Mater. 25 (2018) 623–629.

    Article  Google Scholar 

  30. J. Tan, X. Wu, E.H. Han, W. Ke, X. Liu, F. Meng, X. Xu, Corros. Sci. 88 (2014) 349–359.

    Article  Google Scholar 

  31. T. Gao, Z. Sun, H. Xue, D. Retraint, Int. J. Fatigue 139 (2020) 105798.

    Article  Google Scholar 

  32. C. Yang, P. Liu, Y. Luan, D. Li, Y. Li, Int. J. Fatigue 128 (2019) 105193.

    Article  Google Scholar 

  33. J. Schumacher, B. Clausen, Steel Res. Int. 92 (2021) 2100252.

    Article  Google Scholar 

  34. G. Gao, R. Liu, K. Wang, X. Gui, R.D.K. Misra, B. Bai, Scripta Mater. 184 (2020) 12–18.

    Article  Google Scholar 

  35. L. Zhao, X. Qi, L. Xu, Y. Han, H. Jing, K. Song, Fatigue Fract. Eng. M 44 (2021) 533–550.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52104369) and the China Postdoctoral Science Foundation (No. 2021M700374).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-jun Gao or Shui-ze Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Zj., Pan, Gf., Song, Y. et al. High cycle fatigue behavior of titanium microalloyed high-strength beam steels. J. Iron Steel Res. Int. 30, 2267–2279 (2023). https://doi.org/10.1007/s42243-023-00963-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00963-z

Keywords

Navigation