Skip to main content

Advertisement

Log in

Numerical simulation of effect of various parameters on atomization in an annular slit atomizer

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

As the width–thickness ratio of the discrete nozzle atomizer's discrete hole greatly influences the loss of atomizing gas flow rate, the discrete nozzle atomizer was transformed into an annular slit atomizer with the same total nozzle outlet area. A numerical simulation study on the effect of various parameters on the atomization in the annular slit atomizer was carried out by coupling both the large eddy simulation (LES) and volume of fluid (VOF) model, which is based on the applicability of LES in capturing the breakup behavior of transient liquid droplets and the advantage of VOF method in directly capturing the phase interface. The simulation results showed that the increase in the atomization pressure makes the gas gain higher momentum, while the increase in the nozzle intersection angle decreases the distance between the nozzle exit and the computational domain axis. The increase in these two variables results in enhancing the gas–liquid interaction in the primary atomization zone and the formation of more aluminum droplets simultaneously. It is considered that the atomization effect becomes better when atomization pressure is 2.5 MPa, and the nozzle intersection angle is 60°. Industrial tests showed that the aluminum powder prepared by the optimized annular slit atomizer has a finer mean particle size and a higher yield of fine powder. The numerical simulation results agree well with the industrial test data of the powder particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917–1928. https://doi.org/10.1007/s11665-014-0958-z.

    Article  Google Scholar 

  2. S. González, F. Cáceres, V. Fox, R.M. Souto, Prog. Org. Coat. 46 (2003) 317–323. https://doi.org/10.1016/s0300-9440(03)00021-3.

    Article  Google Scholar 

  3. L. Galfetti, L.T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, S. Bellucci, J. Phys.: Condens. Matter 18 (2006) S1991. https://doi.org/10.1088/0953-8984/18/33/s15.

    Article  Google Scholar 

  4. J.X. Xu, C.Y. Chen, L.Y. Shen, W.D. Xuan, X.G. Li, S.S. Shuai, X. Li, T. Hu, C.J. Li, J.B. Yu, J. Wang, Z.M. Ren, Acta Phys. Sin. 70 (2021) 140201. https://doi.org/10.7498/aps.70.20202071.

  5. J.Q. Liu, J. Pang, P. Wang, D. Yang, X.Y. Li, J.Q. Zhang, China Metallurgy 32 (2022) No. 2, 1–14. https://doi.org/10.13228/j.boyuan.issn1006-9356.20210531.

  6. I.E. Anderson, E.M.H. White, R. Dehoff, Curr. Opin. Solid State Mater. Sci. 22 (2018) 8–15. https://doi.org/10.1016/j.cossms.2018.01.002.

    Article  Google Scholar 

  7. K.H. Arachchilage, M. Haghshenas, S. Park, L. Zhou, Y. Sohn, B. McWilliams, K. Cho, R. Kumar, Adv. Powder Technol. 30 (2019) 2726–2732. https://doi.org/10.1016/j.apt.2019.08.019.

    Article  Google Scholar 

  8. J. Zhou, Study on desulphurization process by spraying powder at the bottom of furnace, Metallurgical Industry Press, Beijing, China, 2008.

    Google Scholar 

  9. G. Antipas, Metals 2 (2012) 202–210. https://doi.org/10.3390/met2020202.

    Article  Google Scholar 

  10. F. Hernandez, T. Riedemann, J. Tiarks, B. Kong, J.D. Regele, T. Ward, I.E. Anderson, in: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series, Springer, Berlin, Germany, 2019, pp. 1507–1519. https://doi.org/10.1007/978-3-030-05861-6_143.

  11. D.A. Firmansyah, R. Kaiser, R. Zahaf, Z. Coker, T.Y. Choi, D. Lee, Jpn. J. Appl. Phys. 53 (2014) 05HA09. https://doi.org/10.7567/jjap.53.05ha09.

  12. O. Aydin, R. Unal, Comput. Fluids 42 (2011) 37–43. https://doi.org/10.1016/j.compfluid.2010.10.013.

    Article  Google Scholar 

  13. M. Tong, D.J. Browne, Comput. Fluids 38 (2009) 1183–1190. https://doi.org/10.1016/j.compfluid.2008.11.014.

    Article  Google Scholar 

  14. J. Ting, I.E. Anderson, Mater. Sci. Eng. A 379 (2004) 264–276. https://doi.org/10.1016/j.msea.2004.02.065.

    Article  Google Scholar 

  15. N. Zeoli, S. Gu, Comput. Mater. Sci. 43 (2008) 268–278. https://doi.org/10.1016/j.commatsci.2007.10.005.

    Article  Google Scholar 

  16. J.S. Thompson, O. Hassan, S.A. Rolland, J. Sienz, Powder Technol. 291 (2016) 75–85. https://doi.org/10.1016/j.powtec.2015.12.001.

    Article  Google Scholar 

  17. X. Li, L. Heisteruber, L. Achelis, V. Uhlenwinkel, U. Fritsching, At. Sprays 21 (2011) 933–948. https://doi.org/10.1615/AtomizSpr.2012004487.

    Article  Google Scholar 

  18. J.Q. Liu, Y.N. Dong, P. Wang, H. Zhao, J. Pang, X.Y. Li, J.Q. Zhang, J. Iron Steel Res. Int. (2022) https://doi.org/10.1007/s42243-022-00855-8.

    Article  Google Scholar 

  19. P.J. O'Rourke, A.A. Amsden, The TAB method for numerical calculation of spray droplet breakup, Los Alamos National Laboratory, Los Alamos, USA, 1987.

  20. R. Reitz, Atomisation Spray Technol. 3 (1987) 309–337.

    Google Scholar 

  21. A. Hillier, H. Isobe, K. Shibata, T. Berger, ApJL 736 (2011) L1. https://doi.org/10.1088/2041-8205/736/1/l1.

    Article  Google Scholar 

  22. X. Li, U. Fritsching, J. Mater. Process. Technol. 239 (2017) 1–17. https://doi.org/10.1016/j.jmatprotec.2016.08.009.

    Article  Google Scholar 

  23. N. Zeoli, H. Tabbara, S. Gu, Chem. Eng. Sci. 66 (2011) 6498–6504. https://doi.org/10.1016/j.ces.2011.09.014.

    Article  Google Scholar 

  24. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100 (1992) 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y.

    Article  MathSciNet  Google Scholar 

  25. Z.Q. Liu, Multi-scale modeling of multiphase and inhomogeneous transmission mechanisms in continuous casting mold, Northeastern University, Shenyang, China, 2015.

    Google Scholar 

  26. J. Smagorinsky, Mon. Weather Rev. 91 (1963) 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    Article  Google Scholar 

  27. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39 (1981) 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.

    Article  Google Scholar 

  28. X.H. Song, X.Y. Lv, S.S. Xie, Production technology of aluminum and aluminum alloy powder, Metallurgical Industry Press, Beijing, China, 2008.

    Google Scholar 

  29. M. Ishii, T. Hibiki, Thermo-fluid dynamics of two-phase flow, 2nd Ed., Springer, Berlin, Germany, 2011. https://doi.org/10.1007/978-1-4419-7985-8.

  30. W.R. Case, The experimental analysis and simulation of the breakup of a liquid filament jetting from a rotary laminar spray nozzle, ETH Zurich, Zurich, Switzerland, 2016. https://doi.org/10.3929/ethz-a-010870075.

    Article  Google Scholar 

  31. J.L. York, H.F. Stubbs, M.R. Tek, Trans. ASME 75 (1953) 1279–1286. https://doi.org/10.1115/1.4015594.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the National Natural Science Foundation of China (U21A20317) and gratitude to EditSprings (https://www.editsprings.cn) for the expert linguistic services provided. In addition, numerical calculation is supported by High-Performance Computing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-an Zhou or Chang-yong Chen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dang, Yc., Chen, Xq. et al. Numerical simulation of effect of various parameters on atomization in an annular slit atomizer. J. Iron Steel Res. Int. 30, 1128–1141 (2023). https://doi.org/10.1007/s42243-023-00943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00943-3

Keywords

Navigation