Skip to main content
Log in

Effect of stainless steel fibers on properties of MgO–C refractories

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

MgO–C refractories with stainless steel fibers were prepared to investigate the effects of stainless steel fibers addition on the thermal shock resistance, oxidation resistance, and microstructure of MgO–C refractories, and the optimum amount of stainless steel fibers was determined. The results showed that adding stainless steel fiber in MgO–C refractories can increase flexural strength and thermal shock resistance, with an optimal addition of 2 wt.%, owing to the bridging effect and crack deflection toughening of stainless steel fibers inside the material. The formation of MgAl1.9Fe0.1O4 composite spinel, which was responsible for higher oxidation resistance, produced volume expansion and prevented the diffusion of oxygen. The strengthening mechanism is physical embedding at room temperature, while it is reaction bonding at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Redecker, A. Sax, P. Quirmbach, H. Jansen, J. Am. Ceram. Soc. 99 (2016) 3761–3769. https://doi.org/10.1111/jace.14380.

    Article  Google Scholar 

  2. L. Musante, L.F. Martorello, P.G. Galliano, A.L. Cavalieri, A.G. Tomba Martinez, Ceram. Int. 38 (2012) 4035–4047. https://doi.org/10.1016/j.ceramint.2012.01.062.

    Article  Google Scholar 

  3. K.S. Lee, G.H. Jo, Y.G. Jung, Y. Byeun, Ceram. Int. 42 (2016) 9955–9962. https://doi.org/10.1016/j.ceramint.2016.03.097.

    Article  Google Scholar 

  4. S. Hayashi, H. Takahashi, A. Watanabe, A. Osaka, Y. Miura, J. Ceram. Soc. Jpn. 102 (1994) 23–28. https://doi.org/10.2109/jcersj.102.23.

    Article  Google Scholar 

  5. M. Bag, S. Adak, R. Sarkar, Ceram. Int. 38 (2012) 2339–2346. https://doi.org/10.1016/j.ceramint.2011.10.086.

    Article  Google Scholar 

  6. E.M.M. Ewais, J. Ceram. Soc. Jpn. 112 (2004) 517–532. https://doi.org/10.2109/jcersj.112.517.

    Article  Google Scholar 

  7. A.P. Luz, D.O. Vivaldini, F. López, P.O.R.C. Brant, V.C. Pandolfelli, Ceram. Int. 39 (2013) 8079–8085. https://doi.org/10.1016/j.ceramint.2013.03.080.

    Article  Google Scholar 

  8. B. Liu, J.L. Sun, G.S. Tang, K.Q. Liu, L. Li, Y.F. Liu, J. Iron Steel Res. Int. 17 (2010) 75–78. https://doi.org/10.1016/S1006-706X(10)60187-2.

    Article  Google Scholar 

  9. C. Yu, B. Dong, Y.F. Chen, B.Y. Ma, J. Ding, C.J. Deng, H.X. Zhu, J.H. Di, J. Iron Steel Res. Int. 29 (2022) 1052–1062. https://doi.org/10.1007/s42243-022-00804-5.

    Article  Google Scholar 

  10. T.B. Zhu, Y.W. Li, S.B. Sang, S.L. Jin, Y.B. Li, L. Zhao, X. Liang, Ceram. Int. 40 (2014) 4333–4340. https://doi.org/10.1016/j.ceramint.2013.08.101.

    Article  Google Scholar 

  11. M. Bag, S. Adak, R. Sarkar, Ceram. Int. 38 (2012) 4909–4914. https://doi.org/10.1016/j.ceramint.2012.02.082.

    Article  Google Scholar 

  12. M. Chen, S. Gao, L. Xu, N. Wang, Ceram. Int. 45 (2019) 21023–21028. https://doi.org/10.1016/j.ceramint.2019.06.306.

    Article  Google Scholar 

  13. H. Rastegar, M. Bavand-Vandchali, A. Nemati, F. Golestani-Fard, Ceram. Int. 45 (2019) 3390–3406. https://doi.org/10.1016/j.ceramint.2018.10.253.

    Article  Google Scholar 

  14. T. Bahtli, D.Y. Hopa, V.M. Bostanci, N.S. Ulvan, S.Y. Yasti, Ceram. Int. 44 (2018) 6780–6785. https://doi.org/10.1016/j.ceramint.2018.01.097.

    Article  Google Scholar 

  15. K.S. Campos, G.F.B.L. e Silva, E.H.M. Nunes, W.L. Vasconcelos, Ceram Int. 38 (2012) 5661–5667. https://doi.org/10.1016/j.ceramint.2012.04.009.

    Article  Google Scholar 

  16. C. Yu, H.X. Zhu, W.J. Yuan, C.J. Deng, P. Cui, S.M. Zhou, J. Alloy. Compd. 579 (2013) 348–354. https://doi.org/10.1016/j.jallcom.2013.06.088.

    Article  Google Scholar 

  17. G.R. Liu, L.A. Chen, H.L. Zhao, Bull. Chin. Ceram. Soc. 8 (1989) 22–28. https://doi.org/10.16552/j.cnki.issn1001-1625.1989.04.005.

    Article  Google Scholar 

  18. C.M. Peret, V.C. Pandolfelli, Am. Ceram. Soc. Bull. 85 (2006) 9401–9407. https://doi.org/10.1590/S0366-69132005000100002.

    Article  Google Scholar 

  19. G.R. Liu, Bull. Chin. Ceram. Soc. 16 (1997) 55–61. https://doi.org/10.16552/j.cnki.issn1001-1625.1997.01.011.

    Article  Google Scholar 

  20. C.H. Sump, J. Mater. Energy Syst. 6 (1985) 279–286. https://doi.org/10.1007/BF02833517.

    Article  Google Scholar 

  21. S.N. Laha, Trans. Indian Ceram. Soc. 39 (1980) 131–137. https://doi.org/10.1080/0371750X.1980.10840735.

    Article  Google Scholar 

  22. W.G. Bareiro, F. de Andrade Silva, E.D. Sotelino, Constr. Build. Mater. 240 (2020) 117881. https://doi.org/10.1016/j.conbuildmat.2019.117881.

    Article  Google Scholar 

  23. K.X. Ni, M.J. Zhang, H.Z. Gu, A. Huang, H.M. Li, Z.J. Shao, Refractories 50 (2016) 10–15. https://doi.org/10.3969/j.issn.1001-1935.2016.01.003.

    Article  Google Scholar 

  24. Y. Sun, D.M. Zhang, Y. Zhou, Q. Fu, J. Kumming Univ. Sci. Technol. 22 (1997) 154–158. https://doi.org/10.16112/j.cnki.53-1223/n.1997.01.032.

    Article  Google Scholar 

  25. W.B. Wang, Refractory technology, 2nd ed., Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  26. H. Jansen, Ironmak. Steelmak. 34 (2007) 384–388. https://doi.org/10.1179/174328107X225134.

    Article  Google Scholar 

  27. S.M. Kumar, H. Jansen, H. Bunse, R. Gaebel, J. Schlüter, J. Rzepczyk, Stahl Eisen. 126 (2006) 33–36.

    Google Scholar 

  28. Y.X. Dai, J. Li, W. Yan, C.B. Shi, J. Mater. Res. Technol. 9 (2020) 4292–4308. https://doi.org/10.1016/j.jmrt.2020.02.055.

    Article  Google Scholar 

  29. J.Z. Shang, B.L. Liu, K. Shi, X.Y. Han, Y. Xia, Y. Liu, J. Mater. Sci. 57 (2022) 17172–17187. https://doi.org/10.1007/s10853-022-07687-7.

    Article  Google Scholar 

  30. S. Zhang, N.J. Marriott, W.E. Lee, J. Eur. Ceram. Soc. 21 (2001) 1037–1047. https://doi.org/10.1016/S0955-2219(00)00308-3.

    Article  Google Scholar 

  31. H.S. Tripathi, A. Ghosh, Ceram. Int. 36 (2010) 1189–1192. https://doi.org/10.1016/j.ceramint.2009.12.011.

    Article  Google Scholar 

  32. X.Y. Han, K. Shi, S.H. Ma, Y. Xia, Y. Liu, J.Z. Shang, , Ceram. Int. 48 (2022) 4576–4583. https://doi.org/10.1016/j.ceramint.2021.10.244.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Project of the Henan Provincial Department of Science and Technology of China (No. 212102210579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Shi.

Ethics declarations

Conflict of interest

All authors of this article have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Jz., Liu, Bl., Shi, K. et al. Effect of stainless steel fibers on properties of MgO–C refractories. J. Iron Steel Res. Int. 30, 2186–2193 (2023). https://doi.org/10.1007/s42243-023-00938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00938-0

Keywords

Navigation