Skip to main content

Advertisement

Log in

Effect of phosphate conversion film on fatigue and corrosion fatigue behavior of an as-rolled Mg–3.08Zn–0.83Al (in wt.%) alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Through investigating and comparing the fatigue behavior of an as-rolled Mg–3.08Zn–0.83Al (in wt.%) alloy performing surface phosphate conversion film treatment, it revealed that the determined fatigue strength of surface treated samples at 106 cycles in air was 65 MPa, whereas the fatigue strength was only 35 MPa when tested in 3.5 wt.% NaCl solution. Failure analysis demonstrated that in air, the fatigue crack initiation was mainly dominated by the interaction between the retarding effect of phosphate conversion film on cyclic slips occurring in the underneath substrate. When the matrix cannot endure the accumulated stress concentration due to the irreversibility of cyclic slips, the fatigue crack will preferentially initiate at sample subsurface. Since the phosphate conversion film cracked easily under the cyclic loading and lost its protectiveness on the substrate in 3.5 wt.% NaCl solution, fatigue cracks were preferentially nucleated at the localized corrosion pits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2018) 245–247.

    Article  Google Scholar 

  2. J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen, F.S. Pan, J. Magn. Alloy. 10 (2022) 863–898.

    Article  Google Scholar 

  3. B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, L.Y. Sheng, J. Magn. Alloy. 9 (2021) 560–568.

    Article  Google Scholar 

  4. C.J. Yan, Y.C. Xin, X.B. Chen, D.K. Xu, P.K. Chu, C.Q. Liu, B. Guan, X.X. Huang, Q. Liu, Nat. Commun. 12 (2021) 4616.

    Article  Google Scholar 

  5. L.Y. Sheng, B.N. Du, Z.Y. Hu, Y.X. Qiao, Z.P. Xiao, B.J. Wang, D.K. Xu, Y.F. Zheng, T.F. Xi, J. Magn. Alloy. 8 (2020) 601–613.

    Article  Google Scholar 

  6. S.A. Khan, M.S. Bhuiyan, Y. Miyashita, Y. Mutoh, T. Koike, Mater. Sci. Eng. A 528 (2011) 1961–1966.

    Article  Google Scholar 

  7. S. Rozali, Y. Mutoh, K. Nagata, Mater. Sci. Eng. A 528 (2011) 2509–2516.

    Article  Google Scholar 

  8. G. Han, J.Y. Lee, Y.C. Kim, J.H. Park, D.I. Kim, H.S. Han, S.J. Yang, H.K. Seok, Corros. Sci. 63 (2012) 316–322.

    Article  Google Scholar 

  9. Y.J. Feng, Q. Li, T.L. Zhao, F.S. Pan, Corros. Sci. 198 (2022) 110136.

    Article  Google Scholar 

  10. Y.J. Feng, L. Wei, X.B. Chen, M.C. Li, Y.F. Cheng, Q. Li, Corros. Sci. 159 (2019) 108133.

    Article  Google Scholar 

  11. W. Liu, Q. Li, M.C. Li, Corros. Sci. 121 (2017) 72–83.

    Article  Google Scholar 

  12. W. Liu, M.C. Li, Q. Luo, H.Q. Fan, J.Y. Zhang, H.S. Lu, K.C. Chou, X.L. Wang, Q. Li, Corros. Sci. 104 (2016) 217–226.

    Article  Google Scholar 

  13. T.L. Zhao, Z.X. Wang, Y.J. Feng, Q. Li, Mater. Today Commun. 31 (2022) 103568.

    Article  Google Scholar 

  14. Z.Y. Nan, S. Ishihara, T. Goshima, Int. J. Fatigue 30 (2008) 1181–1188.

    Article  Google Scholar 

  15. Z.B. Sajuri, Y. Miyashita, Y. Mutoh, Fatigue Fract. Eng. Mater. Struct. 28 (2005) 373–379.

    Article  Google Scholar 

  16. M.S. Bhuiyan, Y. Mutoh, T. Murai, S. Iwakami, Eng. Fract. Mech. 77 (2010) 1567–1576.

    Article  Google Scholar 

  17. S.D. Wang, D.K. Xu, B.J. Wang, E.H. Han, C. Dong, Mater. Des. 84 (2015) 85–93.

    Google Scholar 

  18. B.J. Wang, S.D. Wang, D.K. Xu, E.H. Han, J. Mater. Sci. Technol. 33 (2017) 1075–1086.

    Article  Google Scholar 

  19. Z.B. Xu, Y.W. Song, K.H. Dong, D.Y. Shan, E.H. Han, Anti-Corros. Method Mater. 65 (2018) 587–593.

    Article  Google Scholar 

  20. Y.Y. Zhu, Q. Zhao, Y.H. Zhang, G.M. Wu, Surf. Coat. Technol. 206 (2012) 2961–2966.

    Article  Google Scholar 

  21. X. Jiang, R. Guo, S. Jiang, J. Magn. Alloy. 4 (2016) 230–241.

    Article  Google Scholar 

  22. W.Q. Zhou, D.Y. Shan, E.H. Han, W. Ke, Corros. Sci. 50 (2008) 329–337.

    Article  Google Scholar 

  23. J.H. Dou, Y. Chen, H.J. Yu, C.Z. Chen, Surf. Eng. 33 (2017) 731–738.

    Article  Google Scholar 

  24. R.F. Zhang, G.Y. Xiong, C.Y. Hu, Curr. Appl. Phys. 10 (2010) 255–259.

    Article  Google Scholar 

  25. S. Ishihara, H. Notoya, A. Okada, Z.Y. Nan, Surf. Coat. Technol. 202 (2008) 2085–2092.

    Article  Google Scholar 

  26. S. Ishihara, T. Namito, H. Notoya, A. Okada, Int. J. Fatigue. 32 (2010) 1299–1305.

    Article  Google Scholar 

  27. A. Němcová, P. Skeldon, G.E. Thompson, S. Morse, J. Čížek, B. Pacal, Corros. Sci. 82 (2014) 58–66.

    Article  Google Scholar 

  28. M.S. Bhuiyan, Y. Ostuka, Y. Mutoh, T. Murai, S. Iwakami, Mater. Sci. Eng. A 527 (2010) 4978–4984.

    Article  Google Scholar 

  29. M.S. Bhuiyan, Y. Mutoh, Int. J. Fatigue 33 (2011)1548–1556.

    Article  Google Scholar 

  30. B.J. Wang, D.K. Xu, S.D. Wang, E.H. Han, Mech. Eng. 14 (2019) 113–127.

    Google Scholar 

  31. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, J. Alloy. Compd. 454 (2008) 123–128.

    Article  Google Scholar 

  32. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Acta. Mater. 56 (2008) 985–994.

    Article  Google Scholar 

  33. S. Borle, H. Izadi, A.P. Gerlich, Can. Metall. Quart. 51 (2012) 262–268.

    Article  Google Scholar 

  34. Y.W. Song, Z.B. Xu, K.H. Dong, D.Y. Shan, E.H. Han, Surf. Eng. 35 (2019) 527–535.

    Article  Google Scholar 

  35. M. Chapetti, T. Tagawa, T. Miyata, Mater. Sci. Eng. A 356 (2003) 236–244.

    Article  Google Scholar 

  36. X.B. Chen, N. Birbilis, T.B. Abbott, Corros. Sci. 53 (2011) 2263–2268.

    Article  Google Scholar 

  37. G.Q. Duan, L.X. Yang, S.J. Liao, C.Y. Zhang, X.P. Lu, Y.G. Yang, B. Zhang, Y. Wei, T. Zhang, B.X. Yu, X.C. Zhang, F.H. Wang, Corros. Sci. 135 (2018) 197–206.

    Article  Google Scholar 

  38. H. Mayer, M. Papakyriacou, B. Zettl, S.E. Stanzl-Tschegg, Int. J. Fatigue 25 (2003) 245–256.

    Article  Google Scholar 

  39. G. Eisenmeier, B. Holzwarth, H.W. Höppel, H. Mughrabi, Mater. Sci. Eng. A 319–321 (2001) 578–582.

    Article  Google Scholar 

  40. B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E.H. Han. Int. J. Fatigue 120 (2019) 46–55.

    Article  Google Scholar 

  41. S.D. Wang, D.K. Xu, B.J. Wang, L.Y. Sheng, E.H. Han, C. Dong, Sci. Rep. 6 (2016) 23955.

    Article  Google Scholar 

  42. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, G.Y. Li, Mater. Sci. Eng. A 494 (2008) 397–400.

    Article  Google Scholar 

  43. D.K. Xu, E.H. Han, Scripta Mater. 69 (2013) 702–705.

  44. T. Obara, H. Yoshinga, S. Morozumi, Acta Metall. 21 (1973) 845–853.

    Article  Google Scholar 

  45. S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall. 30 (1982) 1909–1919.

    Article  Google Scholar 

  46. A.J. Eifert, J.P. Thomas, R.G. Rateick, Scripta Mater. 40 (1999) 929–935.

    Article  Google Scholar 

  47. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Scripta Mater. 56 (2007) 1–4.

    Article  Google Scholar 

  48. A.N. Chamos, S.G. Pantelakis, V. Spiliadis, Mater. Des. 31 (2010) 4130–4137.

    Article  Google Scholar 

  49. S. Ishihara, K. Masuda, T. Namito, S. Sunada, H. Notoya, Int. J. Fatigue 66 (2014) 252–258.

    Article  Google Scholar 

  50. M.B. Kannan, W. Dietzel, Mater. Des. 42 (2012) 321–326.

    Article  Google Scholar 

  51. A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corros. Sci. 50 (2008) 823–834.

    Article  Google Scholar 

  52. S.P. Lynch, P. Trevena, Corrosion 44 (1988) 113–124.

    Article  Google Scholar 

  53. D.G. Chakrapani, E.N. Pugh, Corrosion 31 (1975) 247–252.

    Article  Google Scholar 

  54. E.I. Meletis, R.F. Hochman, Corrosion 40 (1984) 39–45.

    Article  Google Scholar 

  55. S. Jafari, R.K. Singh Raman, C.H.J. Davies, Eng. Fract. Mech. 137 (2015) 2–11.

    Article  Google Scholar 

  56. R.K. Singh Raman, S. Jafari, S.E. Harandi, Eng. Fract. Mech. 137 (2015) 97–108.

    Article  Google Scholar 

  57. S. Jafari, S. Harandi, R.K. Singh Raman, JOM 67 (2015) 1143–1153.

    Article  Google Scholar 

  58. M. Kappes, M. Iannuzzi, R.M. Carranza, J. Electrochem. Soc. 160 (2013) 168–178.

    Article  Google Scholar 

  59. N. Winzer, A. Atrens, G.L. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort, C. Blawert, Adv. Eng. Mater. 7 (2005) 659–693.

    Article  Google Scholar 

  60. R.S. Stampella, R.P.M. Procter, V. Ashworth, Corros. Sci. 24 (1984) 325–341.

    Article  Google Scholar 

  61. X.L. He, Y.H. Wei, L.F. Hou, Z.F. Yan, C.L. Guo, P.J. Han, Rare Metals 33 (2014) 276–286.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Projects (Grant Nos. 52071220, 51871211, U21A2049, 51701129 and 51971054), Liaoning Province's project of “Revitalizing Liaoning Talents” (XLYC1907062), the Doctor Startup Fund of Natural Science Foundation Program of Liaoning Province (No. 2019-BS-200), High level achievement construction project of Shenyang Ligong University (SYLUXM202105), the Strategic New Industry Development Special Foundation of Shenzhen (JCYJ20170306141749970), the funds of International Joint Laboratory for Light Alloys, Liaoning BaiQianWan Talents Program, the Domain Foundation of Equipment Advance Research of 13th Five-year Plan (61409220118), National Key Research and Development Program of China (Nos. 2017YFB0702001 and 2016YFB0301105), the Innovation Fund of Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), the National Basic Research Program of China (973 Program) project (Grant No. 2013CB632205), the Fundamental Research Fund for the Central Universities (Grant No. N2009006), and Bintech-IMR R&D Program (No. GYY-JSBU-2022-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-jie Wang or Dao-kui Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Bj., Xu, Dk., Wang, S. et al. Effect of phosphate conversion film on fatigue and corrosion fatigue behavior of an as-rolled Mg–3.08Zn–0.83Al (in wt.%) alloy. J. Iron Steel Res. Int. 30, 2557–2565 (2023). https://doi.org/10.1007/s42243-023-00922-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00922-8

Keywords

Navigation