Skip to main content
Log in

Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The ceramic filter in continuous casting tundish can effectively improve the cleanliness of high-performance steel by regulating tundish flow field to promote the removal of inclusions and adsorbing or blocking fine inclusions in the molten steel into the mold. The interaction between microporous magnesia refractories used as tundish filter and molten interstitial-free (IF) steel at 1873 K was investigated to reveal the formation mechanism of their interface layer and its effect on steel cleanliness by laboratory research and thermodynamic calculations. The results show that the magnesium–aluminum spinel layer at the interface between the molten IF steel and the microporous magnesia refractories is formed mainly by the reaction of MgO in the refractory with the [Al] and [O] in the molten steel, significantly reducing the total O content, the size and amount of inclusions of the molten steel. In addition, the interparticle phases of microporous magnesia refractories at high temperature can adsorb Al2O3 and TiO2 inclusions in the molten steel into interparticle channels of the refractories to form high melting point spinel, impeding the further penetration of the molten steel. As a result, the consecutive interface layer of high melting point spinel between microporous magnesia refractories and molten steel can improve the cleanliness of the molten steel by adsorbing inclusions in the molten steel and avoid the direct dissolution of refractories of the tundish ceramic filter immersed in the molten steel, increasing their service life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.K. Huang, L.F. Zhang, R.B. Jiang, Y.T. Guo, W. Yang, H.J. Duan, D.B. Jiang, X.G. Zhang, Steelmaking 36 (2020) No. 6, 39–45+66.

  2. B. Wang, R.C. Li, J.S. Liu, R.J. Cheng, H. Zhang, H.W. Ni, J. Iron Steel Res. 33 (2021) 293–301.

    Google Scholar 

  3. E.I. Mogilevskii, V.I. Burtsev, Refract. Ind. Ceram. 41 (2000) 28–30.

    Article  Google Scholar 

  4. S.S. Feng, J.Q. Chen, Refractories. (2002) No. 4, 235–239.

  5. X.Q. Hong, J.Z. Li, W.D. Yi, Z.Q. Song, Z.X. Lei, X.X. Yi, Refractories 46 (2012) No. 2, 81–86+95.

  6. M. Li, W.J. Zhai, China Metallurgy 26 (2016) No. 11, 26–29.

    Google Scholar 

  7. H.L. Wang, Q.Y. Cui, Q.H. Xue, Z.H. Yan, P.T. Song, X.L. Tian, Refractories 44 (2010) No. 1, 67–70.

    Google Scholar 

  8. L. Wang, G.Q. Li, Y. Liu, Z. Zhang, Y.W. Li, X.F. Xu, J. Iron Steel Res. 29 (2017) 616–625.

    Google Scholar 

  9. W. Yan, G. Wu, S. Ma, S. Schafföner, Y. Dai, Z. Chen, J. Qi, N. Li, J. Eur. Ceram. Soc. 38 (2018) 4276–4282.

    Article  Google Scholar 

  10. G. Wu, W. Yan, S. Schafföner, Y. Dai, B. Han, T. Li, S. Ma, N. Li, G. Li, J. Alloy. Compd. 796 (2019) 131–137.

    Article  Google Scholar 

  11. L. Fu, H. Gu, A. Huang, M. Zhang, Z. Li, J. Am. Ceram. Soc. 98 (2015) 1658–1663.

    Article  Google Scholar 

  12. Y. Zou, H. Gu, A. Huang, L. Fu, G. Li, Mater. Des. 186 (2020) 108326.

    Article  Google Scholar 

  13. C. Tan, Y. Liu, G.Q. Li, C. Yuan, Y.F. Tian, Y.S. Zou, A. Huang, Steel Res. Int. 92 (2021) 2100010.

    Article  Google Scholar 

  14. L. Fu, Y.S. Zou, A. Huang, H.Z. Gu, H.W. Ni, J. Am. Ceram. Soc. 102 (2019) 3705–3714.

    Article  Google Scholar 

  15. Y.S. Zou, A. Huang, L.P. Fu, H.Z. Gu, Ceram. Int. 44 (2018) 12965–12972.

    Article  Google Scholar 

  16. C. Yuan, Y. Liu, G.Q. Li, Y.S. Zou, A. Huang, Ceram. Int. 48 (2022) 427–435.

    Article  Google Scholar 

  17. L. Chen, D.Y. Wang, H.H. Wang, T.P. Qu, A. Huang, G.Q. Li, J. Iron Steel Res. 34 (2022) 43–51.

    Google Scholar 

  18. X.Q. Yan, W. Zheng, G.W. Wang, W. Yan, G.Q. Li, J. Iron Steel Res. 32 (2020) 483–490.

    Google Scholar 

  19. J.J. Yan, W. Yan, S. Schafföner, Y.J. Dai, Z. Chen, Q. Wang, G.Q. Li, C.J. Jia, Ceram. Int. 47 (2021) 6540–6547.

    Article  Google Scholar 

  20. Y. Ren, Y.F. Wang, S.S. Li, L.F. Zhang, X.J. Zou, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.

    Article  Google Scholar 

  21. H. Matsuura, C. Wang, G.H. Wen, S. Sridhar, ISIJ Int. 47 (2007) 1265–1274.

    Article  Google Scholar 

  22. J.J. Chen, J.H. Liu, J.F. Liu, C.L. Zhuang, Chin. J. Eng. 33 (2011) 173–178.

    Google Scholar 

  23. F. Ruby-Meyer, J. Lehmann, H. Gaye, Scand. J. Metall. 29 (2000) 206–212.

    Article  Google Scholar 

  24. H.X. Yu, M. Pan, D.X. Yang, Iron and Steel 55 (2020) No. 6, 46–53.

    Google Scholar 

  25. Z.Q. Li, L. Yuan, T. Liu, J.K. Yu, J. Northeast. Univ. (Nat. Sci.) 33 (2012) 1294–1298.

  26. A. Harada, G. Miyano, N. Maruoka, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2230–2238.

    Article  Google Scholar 

  27. L.F. Zhang, Y. Ren, H.J. Duan, W. Yang, L.Y. Sun, Metall. Mater. Trans. B 46 (2015) 1809–1825.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. U1860205 and 52174323) and Innovation Team Cultivation Funding Project of Wuhan University of Science and Technology (2018TDX08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ww., Zheng, W., Yan, W. et al. Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness. J. Iron Steel Res. Int. 30, 1743–1754 (2023). https://doi.org/10.1007/s42243-022-00889-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00889-y

Keywords

Navigation