Skip to main content
Log in

Effect of cerium on microstructure, eutectic carbides and Laves phase in electroslag remelted 15Cr–22Ni–1Nb austenitic heat-resistant steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The dendrites, eutectic carbides, Laves phase and microsegregation of alloying element in electroslag remelted 15Cr–22Ni–1Nb austenitic heat-resistant steel with varying cerium contents were studied. The liquidus and solidus temperatures of the steel were determined to reveal the effect of cerium on solidification temperature interval and local solidification time of the steel. The secondary dendrite arm spacing decreases from 57.10 to 40.18 μm with increasing the cerium content from 0 to 0.0630 wt.%. The eutectic NbC and Laves phase in as-cast ingots exhibit blocky and honeycomb morphology, respectively. The area fractions and sizes of eutectic NbC and Laves phase in as-cast ingots decrease with the increase in cerium content. The atomic percentage of Laves phase-forming element (Ni, Nb, Cr, Mo and Si) decreases with the increase in cerium content of the steel. The microsegregation of Mo, Ni, Si, Cr and Nb decreases with increasing the cerium content, which is favorable to reducing both the amount and sizes of eutectic NbC and Laves phase in as-cast ingots. The solidification temperature interval and local solidification time of the steel decrease as the cerium content is increased from 0 to 0.0630 wt.%, which inhibits the growth of dendrites, eutectic NbC and Laves phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Wu, S. Hamada, H. Noguchi, Int. J. Fatigue 55 (2013) 291–298.

    Article  Google Scholar 

  2. H. De Cicco, M.I. Luppo, L.M. Gribaudo, J. Ovejero-García, Mater. Charact. 52 (2004) 85–92.

    Article  Google Scholar 

  3. X. Zheng, C.B. Shi, X. Zhu, J. Li, H.C. Xu, Metall. Mater. Trans. B 53 (2022) 877–894.

    Article  Google Scholar 

  4. C.B. Shi, Q.T. Zhu, W.T. Yu, H.D. Song, J. Li, J. Mater. Eng. Perform. 25 (2016) 4785–4795.

    Article  Google Scholar 

  5. H.H. Lu, H.K. Guo, W. Liang, J.C. Li, G.W. Zhang, T.T. Li, Mater. Des. 188 (2020) 108477.

    Article  Google Scholar 

  6. J.C. Li, B.F. Wang, Y.L. Ma, J.Z. Cui, Mater. Sci. Eng. A 425 (2006) 201–204.

    Article  Google Scholar 

  7. J. Li, W.Q. Chen, Q. Liu, X.F. Wang, Steel Res. Int. 79 (2008) 358–363.

    Article  Google Scholar 

  8. B. Abbasi-Khazaei, S. Ghaderi, J. Mater. Sci. Technol. 28 (2012) 946–950.

    Article  Google Scholar 

  9. R. Gecu, S. Acar, A. Kisasoz, K. Altug Guler, A. Karaaslan, Trans. Nonferrous Met. Soc. China 28 (2018) 385–392.

  10. M. Boccalini, H. Goldenstein, Int. Mater. Rev. 46 (2001) 92-115.

    Article  Google Scholar 

  11. H. Guo, S.F. Yang, T.T. Wang, H. Yuan, Y.L. Zhang, J.S. Li, J. Mater. Sci. Technol. 99 (2022) 277–287.

    Article  Google Scholar 

  12. F. Ji, R. Xu, Y.L. Gao, Q.C. Tian, L. Wang, Z.X. Xiao, F.X. Yin, J. Iron Steel Res. Int. 28 (2021) 1591–1604.

    Article  Google Scholar 

  13. S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, H.C. Zhu, J. Mater. Sci. Technol. 102 (2022) 105–114.

    Article  Google Scholar 

  14. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, L.F. Xia, S.C. Zhang, H.C. Zhu, W. Wu, Metall. Mater. Trans. B 51 (2020) 2240–2251.

    Article  Google Scholar 

  15. L.N. Bartlett, B.R. Avila, Inter. J. Metalcast. 10 (2016) 401–420.

    Article  Google Scholar 

  16. F.X. Yin, L. Wang, Z.X. Xiao, J.H. Feng, L. Zhao, J. Rare Earths 38 (2020) 1030–1038.

    Article  Google Scholar 

  17. Q. Wang, L.J. Wang, W. Zhang, J.M. Li, K.C. Chou, Metall. Mater. Trans. B 51 (2020) 1773–1783.

    Article  Google Scholar 

  18. D.M. Herlach, Mater. Sci. Eng. R 12 (1994) 177–272.

    Article  Google Scholar 

  19. C.B. Shi, X. Zheng, Z.B. Yang, P. Lan, J. Li, F. Jiang, Met. Mater. Int. 27 (2021) 3603–3616.

    Article  Google Scholar 

  20. Z.I. Morita, T. Tanaka, Trans. Iron Steel Inst. Jpn. 23 (1983) 824–833.

    Article  Google Scholar 

  21. Y. Meng, B.G. Thomas, Metall. Mater. Trans. B 34 (2003) 685–705.

    Article  Google Scholar 

  22. J.N. DuPont, M.R. Notis, A.R. Marder, C.V. Robino, J.R. Michael, Metall. Mater. Trans. A 29 (1998) 2785–2796.

    Article  Google Scholar 

  23. Y.P. Ji, M.X. Zhang, H.P. Ren, Metals 8 (2018) 884.

    Article  Google Scholar 

  24. L.M. Wang, Z.B. Wang, K. Lu, Acta Mater. 59 (2011) 3710–3719.

    Article  Google Scholar 

  25. R.M. Geng, J. Li, C.B. Shi, J. Iron Steel Res. Int. 29 (2022) 1659–1668.

    Article  Google Scholar 

  26. Y.M. Won, B.G. Thomas, Metall. Mater. Trans. A 32 (2001) 1755–1767.

    Article  Google Scholar 

  27. X.J. Wang, G.Q. Li, Y. Liu, F. Wang, Q. Wang, ISIJ Int. 61 (2021) 1850–1859.

    Article  Google Scholar 

  28. L.A. Smirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin, V.G. Milyuts, Metallurgist 59 (2016) 1053–1061.

    Article  Google Scholar 

  29. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  30. M.M. Song, B. Song, S.H. Zhang, Z.L. Xue, Z.B. Yang, R.S. Xu, ISIJ Int. 57 (2017) 1261–1267.

    Article  Google Scholar 

  31. C.G. de Andrés, F.G. Caballero, C. Capdevila, H.K.D.H. Bhadeshia, Scripta Mater. 39 (1998) 791–796.

    Article  Google Scholar 

  32. M.G.D.V. Cuppari, S.F. Santos, Metals 6 (2016) 250.

    Article  Google Scholar 

  33. G. Li, P. Lan, J.Q. Zhang, G.X. Wu, Metall. Mater. Trans. B 51 (2020) 452–466.

    Article  Google Scholar 

  34. Z. Fan, F. Gao, L. Zhou, S.Z. Lu, Acta Mater. 152 (2018) 248–257.

    Article  Google Scholar 

  35. R. Schmid-Fetzer, A. Kozlov, Acta Mater. 59 (2011) 6133–6144.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (Grant Nos. 51874026 and 52074027) is greatly acknowledged. The authors are also grateful to the financial support from the State Key Laboratory of Advanced Metallurgy (Grant No. 41621024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-bin Shi or Peng Lan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest and ethical rule that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Shi, Cb., Wang, Sj. et al. Effect of cerium on microstructure, eutectic carbides and Laves phase in electroslag remelted 15Cr–22Ni–1Nb austenitic heat-resistant steel. J. Iron Steel Res. Int. 30, 338–349 (2023). https://doi.org/10.1007/s42243-022-00875-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00875-4

Keywords

Navigation