Skip to main content
Log in

Characteristics of SEN clogging and adhesive behavior of oxide inclusion during continuous casting of Ti-stabilized ultra-pure ferritic stainless steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Submerged entry nozzle (SEN) clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless (Ti-UPFS) steels was systematically investigated via cross-sectional analysis and acid dissolution treatment. The SEN deposit profile was characterized as occurring in three major layers: (1) an eroded refractory layer; (2) an initial adhesive layer comprised  an Al2O3–ZrO2 composite sub-layer and a dense Al2O3-based deposit sub-layer; and (3) a porous multiphase deposit layer mainly consisting of MgO·Al2O3, CaO–Al2O3, and CaO–TiOx. The MgO·Al2O3-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth. Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits. Furthermore, a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force. A high number of small MgO·Al2O3 inclusions were expected to accelerate the buildup of clogging deposits. Improving the modification of MgO·Al2O3-rich inclusions in the size range of 2–4 µm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Hou, G. Cheng, K. Kadoi, H. Inoue, Q.J. Ruan, J. Pan, X. Chen, Metall. Mater. Trans. B (2022) 2499–2511.

  2. R. Maddalena, R. Rastogi, S. Bassem, A.W. Cramb, Iron Steelmak. 27 (2000) 71–79.

    Google Scholar 

  3. R.C. Nunnington, N. Sutcliffe, in: 59th Electric Furnace Conference and 19th Process Technology Conference, Iron and Steel Society, Phoenix, USA, 2001, pp. 361–394.

  4. Y. Sun, X. Bai, X. Yin, D. Duan, J. Jin, S. Fu, X. Zhu, Chin. J. Eng. 38 (2016) 109–118.

    Google Scholar 

  5. C. Hua, Y. Bao, M. Wang, Powder Technol. 393 (2021) 405–420.

    Article  Google Scholar 

  6. Y.I. Ito, S. Nara, Y. Kato, M. Suda, Tetsu-to-Hagané 93 (2007) 355–361.

    Article  Google Scholar 

  7. L. Zhang, B.G. Thomas, Metall. Mater. Trans. B 37 (2006) 733–761.

    Article  Google Scholar 

  8. K. Sasai, Y. Mizukami, ISIJ Int. 34 (1994) 802–809.

    Article  Google Scholar 

  9. X.R. Chen, G.G. Cheng, Y.Y. Hou, J.Y. Li, J.X. Pan, J. Iron Steel Res. Int. 27 (2020) 913–921.

    Article  Google Scholar 

  10. Y. Gao, K. Sorimachi, ISIJ Int. 33 (1993) 291–297.

    Article  Google Scholar 

  11. S. Basu, S.K. Choudhary, N.U. Girase, ISIJ Int. 44 (2004) 1653–1660.

    Article  Google Scholar 

  12. Y.B. Kang, J.H. Lee, Metall. Ital. (2019) No. 1, 5–11.

  13. H.G. Zheng, W.Q. Chen, Steelmaking 22 (2006) No. 3, 35–38.

    Google Scholar 

  14. L. Cheng, L. Zhang, Y. Ren, W. Yang, Metall. Mater. Trans. B 52 (2021) 1186–1193.

    Article  Google Scholar 

  15. J. Yan, H.M. Yao, Z.G. Wu, Q.Y. Gao, J. Iron Steel Res. 32 (2020) 20–26.

    Google Scholar 

  16. J. Li, G. Cheng, Q. Ruan, J. Pan, X. Chen, Metall. Mater. Trans. B 50 (2019) 2769–2779.

    Article  Google Scholar 

  17. P. Dorrer, S.K. Michelic, C. Bernhard, A. Penz, R. Rössler, Steel Res. Int. (2019) 1800635.

  18. J.H. Lee, M.H. Kang, S.K. Kim, Y.B. Kang, ISIJ Int. 58 (2018) 1257–1266.

    Article  Google Scholar 

  19. H. Zheng, B. Lu, S. Li, L. Wang, X. Chen, Special Steel 27 (2006) No. 6, 50–51.

    Google Scholar 

  20. H. Zhen, W. Chen, Q. Liu, P. Duan, L. Zhao, H. Wang, J. Iron Steel Res. (2005) No. 1, 14–18.

  21. X. Bai, Y. Sun, L. Luo, C. Zhao, J. Iron Steel Res. Int. 27 (2020) 148–159.

    Article  Google Scholar 

  22. F. Tehovnik, J. Burja, B. Arh, M. Knap, Metalurgija 54 (2015) 371–374.

    Google Scholar 

  23. X. Yin, Y. Sun, Y. Yang, X. Deng, M. Barati, A. McLean, Ironmak. Steelmak. 44 (2017) 152–158.

    Article  Google Scholar 

  24. S. Yang, Q. Wang, L. Zhang, J. Li, K. Peaslee, Metall. Mater. Trans. B 43 (2012) 731–750.

    Article  Google Scholar 

  25. C.B. Shi, W.T. Yu, H. Wang, J. Li, M. Jiang, Metall. Mater. Trans. B 48 (2017) 146–161.

    Article  Google Scholar 

  26. D. Kruger, A. Garbers-Craig, Metall. Mater. Trans. B 48 (2017) 1514–1532.

    Article  Google Scholar 

  27. R.A. Fisher, J. Agric. Sci. 16 (1926) 492–505.

    Article  Google Scholar 

  28. U.D. Salgado, C. Weiß, S.K. Michelic, C. Bernhard, Metall. Mater. Trans. B 49 (2018) 1632–1643.

    Article  Google Scholar 

  29. K. Sasai, Y. Mizukami, ISIJ Int. 41 (2001) 1331–1339.

    Article  Google Scholar 

  30. A. Marmur, Tip-surface capillary interactions, Langmuir 9 (1993) 1922–1926.

    Article  Google Scholar 

  31. K. Sasai, ISIJ Int. 54 (2014) 2780–2789.

    Article  Google Scholar 

  32. L.C. Zhong, M. Zeze, K. Mukai, Acta Metall. Sin. (Engl. Lett.) 17 (2004) 795–804.

    Google Scholar 

  33. A. Murari, H. Albrecht, A. Barzon, S. Curiotto, L. Lotto, Vacuum 68 (2002) 321–328.

    Article  Google Scholar 

  34. C.M. Fang, S.C. Parker, G. de With, J. Am. Ceram. Soc. 83 (2000) 2082–2084.

    Article  Google Scholar 

  35. M.A.L. Braulio, M. Rigaud, A. Buhr, C. Parr, V.C. Pandolfelli, Ceram. Int. 37 (2011) 1705–1724.

    Article  Google Scholar 

  36. J. Jeevaratnam, L.S.D. Glasser, F.P. Glasser, Nature 194 (1962) 764–765.

    Article  Google Scholar 

  37. P.P. Evseev, A.F. Filippov, Izv. Vysshikh Uchebnykh Zaved. Chernaya Metall. 10 (1967) No. 3, 55–59.

    Google Scholar 

  38. M. Zielinski, B. Sikora, Pr. Inst. Metal. Żelaza 29 (1977) 229–232.

    Google Scholar 

  39. H. Kobatake, J. Brillo, J. Mater. Sci. 48 (2013) 4934–4941.

    Article  Google Scholar 

  40. Z. Li, K. Mukai, M. Zeze, K.C. Mills, J. Mater. Sci. 40 (2005) 2191–2195.

    Article  Google Scholar 

  41. J. Choe, H.G. Kim, Y. Jeon, H.J. Park, Y. Kang, S. Ozawa, J. Lee, ISIJ Int. 54 (2014) 2104–2108.

    Article  Google Scholar 

  42. A. Milne, A. Amirfazli, Adv. Colloid Interface Sci. 170 (2012) 48–55.

    Article  Google Scholar 

  43. W.Y. Kim, G.J. Nam, S.Y. Kim, Metall. Mater. Trans. B 52 (2021) 1508–1520.

    Article  Google Scholar 

  44. H. Barati, M. Wu, A. Kharicha, A. Ludwig, Powder Technol. 329 (2018) 181–198.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51574026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-hui Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Xf., Sun, Yh. & Wu, Hb. Characteristics of SEN clogging and adhesive behavior of oxide inclusion during continuous casting of Ti-stabilized ultra-pure ferritic stainless steels. J. Iron Steel Res. Int. 30, 1939–1951 (2023). https://doi.org/10.1007/s42243-022-00858-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00858-5

Keywords

Navigation