Skip to main content

Advertisement

Log in

Application of distributed model predictive control based on neighborhood optimization in gauge–looper integrated system of tandem hot rolling

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To solve the coupling relationship between the strip automatic gauge control and the looper control in traditional control strategy of tandem hot rolling, a distributed model predictive control (DMPC) strategy for the tandem hot rolling was explored, and a series of simulation experiments were carried out. Firstly, based on the state space analysis method, the multivariable dynamic transition process of hot strip rolling was studied, and the state space model of a gauge–looper integrated system in tandem hot rolling was established. Secondly, DMPC strategy based on neighborhood optimization was proposed, which fully considered the coupling relationship in this integrated system. Finally, a series of experiments simulating disturbances and emergency situations were completed with actual rolling data. The experimental results showed that the proposed DMPC control strategy had better performance compared with the traditional proportional–integral control and centralized model predictive control, which is applicable for the gauge–looper integrated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Constant

b :

Backward slip

C :

Control period

c f :

Viscous friction constant

d :

Vertical distance from looper roll to rolling plane (mm)

d :

Disturbance vector of system

E :

Elastic modulus (MPa)

f :

Forward slip

F :

Rolling force (kN)

g :

Gravitational acceleration (m/s2)

h :

Thickness of strip (mm)

J :

Performance index of each controller

\(\overline{J}\) :

Performance index of each controller with the neighborhood optimization method

J lp :

Inertia of looper roll (kg m2)

k f :

Deformation resistance (MPa kN−1)

L :

Distance between adjacent stands (mm)

L 3 :

Length of looper arm (mm)

\(\dot{L}(\theta )\) :

Actual length of strip (mm)

M :

Torque of looper motor (kg m2)

M m :

Mill stiffness (kN mm−1)

P :

Prediction period

q :

Intermediate variable of first-order inertial process

Q :

Weighting matrix of output quantity

r :

Radius of looper roll (mm)

R :

Radius of deformed work roll (mm)

R :

Weighting matrix of input quantity

S :

Roll gap (mm)

S :

Subsystem

S S :

Cross-sectional area of strip (mm2)

t :

Time (s)

T :

Rolled workpiece temperature (°C)

T 0 :

Heat exchange between adjacent stands (°C)

T R :

Temperature dissipation caused by air cooling (°C)

T W :

Temperature dissipation caused by water cooling (°C)

T C :

Heat transfer between stand roll and strip (°C)

u :

Control vector of system

U :

Control sequence of system

U M :

Reference value of looper motor torque (MPa)

U S :

Reference value of roll gap (mm)

U V :

Reference value of rolling speed (m s−1)

v :

Strip speed (m s−1)

V :

Work roll speed (m s−1)

w :

Strip width (mm)

W R :

Looper roll mass (kg)

W S :

Strip mass (kg)

x :

State vector of system

\(\hat{\user2{x}}\) :

Predictive value of x

\(\user2{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{x} }\) :

Neighbors of x

y :

Output vector of system

y d :

Desired value of y

\(\hat{\user2{y}}\) :

Predictive value of y

\(\hat{\user2{y}}\) :

Neighbors of y

\(\user2{\hat{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y} }}\) :

Predictive value of \(\user2{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y} }\)

α :

Rolling force differential coefficient

β :

Forward slip differential coefficient

γ :

Deformation resistance differential coefficient

\(\psi\) :

Strip temperature differential coefficient

σ :

Interstand tension (MPa)

θ :

Looper angle (rad)

ω :

Work roll rotation speed (rad s−1)

ω L :

Looper arm rotation speed (rad s−1)

τ d :

Transportation time of strip between adjacent stands (s)

τ M :

Time constant of automatic torque regulator system

τ S :

Time constants of hydraulic gap control system

τ V :

Time constants of automatic speed regulator system

i :

Stand number, i = 1, 2,…,7

0:

Initial value

in:

Entry of stand

out:

Exit of stand

References

  1. S.K. Yildiz, J.F. Forbes, B. Huang, Y. Zhang, F. Wang, V. Vaculik, M. Dudzic, Appl. Math. Modell. 33 (2009) 3208–3225. https://doi.org/10.1016/j.apm.2008.10.035.

    Article  Google Scholar 

  2. I.S. Choi, J.A. Rossiter, P.J. Fleming, Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 222 (2008) 137–152. https://doi.org/10.1243/09596518jsce401.

    Article  Google Scholar 

  3. K. Asano, K. Yamamoto, T. Kawase, N. Nomura, Control Eng. Pract. 8 (2000) 337–344. https://doi.org/10.1016/s0967-0661(99)00186-0.

    Article  Google Scholar 

  4. I.S. Choi, J.A. Rossiter, P.J. Fleming, J. Process Control 17 (2007) 509–521. https://doi.org/10.1016/j.jprocont.2006.12.005.

    Article  Google Scholar 

  5. Z.Z. Zhong, J.C. Wang, IEEE Trans. Ind. Electron. 58 (2011) 3668–3679. https://doi.org/10.1109/tie.2010.2093473.

    Article  Google Scholar 

  6. F.C. Yin, X.C. Wu, Metall. Res. Technol. 118 (2021) 215. https://doi.org/10.1051/metal/2020095.

    Article  Google Scholar 

  7. X.D. Zhang, S.S. Gao, W. Gao, W. Zhang, X. Wang, IEEE Access 8 (2020) 117566–117573. https://doi.org/10.1109/access.2020.3003687.

    Article  Google Scholar 

  8. R. Takahashi, Control Eng. Pract. 9 (2001) 987–993. https://doi.org/10.1016/s0967-0661(01)00087-9.

    Article  Google Scholar 

  9. G. Hearns, M.J. Grimble, ISIJ Int. 40 (2000) 995–1002. https://doi.org/10.2355/isijinternational.40.995.

    Article  Google Scholar 

  10. G. Hearns, P. Reeve, P. Smith, T. Bilkhu, IEE Proc.: Control Theory Appl. 151 (2004) 386–394. https://doi.org/10.1049/ip-cta:20040642.

    Article  Google Scholar 

  11. J. Pittner, M.A. Simaan, IEEE Trans. Ind. Appl. 46 (2010) 2251–2258. https://doi.org/10.1109/tia.2010.2072978.

    Article  Google Scholar 

  12. F.C. Yin, D.H. Zhang, Y.C. Zhang, Simulation 93 (2017) 307–321. https://doi.org/10.1177/0037549716666688.

    Article  Google Scholar 

  13. Y.F. Ji, H. Yuan, L.B. Song, H.Y. Li, W. Peng, J. Sun, Int. J. Adv. Manuf. Technol. 118 (2022) 1213–1226. https://doi.org/10.1007/s00170-021-07912-8.

    Article  Google Scholar 

  14. J.G. Van Antwerp, R.D. Braatz, J. Process Control 10 (2000) 1–8. https://doi.org/10.1016/s0959-1524(99)00050-5.

    Article  Google Scholar 

  15. J.H. Lee, Int. J. Control Autom. Syst. 9 (2011) 415. https://doi.org/10.1007/s12555-011-0300-6.

    Article  MathSciNet  Google Scholar 

  16. X. Liu, X. Kong, J. Process Control 23 (2013) 1023–1040. https://doi.org/10.1016/j.jprocont.2013.06.004.

    Article  Google Scholar 

  17. D. Van Hessem, O. Bosgra, J. Process Control 16 (2006) 225–241. https://doi.org/10.1016/j.jprocont.2005.06.003.

    Article  Google Scholar 

  18. M. Wehr, S. Stockert, D. Abel, G. Hirt, in: 2018 IEEE Conference on Control Technology and Applications (CCTA), IEEE, Copenhagen, Denmark, 2018, pp. 1377–1382.

  19. Y.J. Hu, J. Sun, W. Peng, D.H. Zhang, J. Process Control 97 (2021) 92–102. https://doi.org/10.1016/j.jprocont.2020.11.014.

    Article  Google Scholar 

  20. X.D. Zhang, S.S. Gao, X.P. Liu, T.P. Huang, Int. J. Control Autom. Syst. 16 (2018) 577–585. https://doi.org/10.1007/s12555-017-0091-5.

    Article  Google Scholar 

  21. F.C. Yin, J. Sun, W. Peng, H.Y. Wang, J. Yang, D.H. Zhang, J. Cent. South Univ. 24 (2017) 1369–1378. https://doi.org/10.1007/s11771-017-3541-6.

    Article  Google Scholar 

  22. F.C. Yin, IEEE Access 8 (2020) 73972–73985. https://doi.org/10.1109/access.2020.2987940.

    Article  Google Scholar 

  23. Y. Zheng, S.Y. Li, X.B. Wang, J. Process Control 19 (2009) 1427–1437. https://doi.org/10.1016/j.jprocont.2009.04.012.

    Article  Google Scholar 

  24. S. Gao, Y. Zheng, S.Y. Li, Mathematics 6 (2018) 86. https://doi.org/10.3390/math6050086.

    Article  Google Scholar 

  25. Y.S. Wei, Y. Zheng, S.Y. Li, Q.M. Zhu, Control Theory & Applications 34 (2017) 997–1007.

    Google Scholar 

  26. Y. Zheng, Y.S. Wei, S.Y Li, IEEE Trans. Autom. Sci. Eng. 15 (2018) 1749–1758. https://doi.org/10.1109/tase.2017.2780444.

    Article  Google Scholar 

  27. D.P. Huang, H.Y. Li, X. Li, IEEE Trans. Circuits Syst. 67 (2020) 3123–3127. https://doi.org/10.1109/tcsii.2020.2983096.

    Article  Google Scholar 

  28. Y.X. Wang, T. Zhang, Z.H. Cai, J. Zhao, K. Wu, Chin. J. Aeronaut. 33 (2020) 2977–2897. https://doi.org/10.1016/j.cja.2020.04.028.

    Article  Google Scholar 

  29. J. Pian, Y. Zhu, Neurocomputing 169 (2015) 457–465. https://doi.org/10.1016/j.neucom.2014.09.089.

    Article  Google Scholar 

  30. Y.S. Wei, J. Wu, S.Y. Li, N. Li. In: 2013 10th IEEE International Conference on Control and Automation (ICCA), IEEE, Hangzhou, China, 2013, pp. 664–669.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFB1308700), the National Natural Science Foundation of China (Grant Nos. U21A20117 and 52074085, the Fundamental Research Funds for the Central Univer-sities (Grant No. N2004010), and the Liaoning Revitalization Talents651 Program (XLYC1907065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Ethics declarations

Conflict of interest

All authors disclosed no relevant relationships.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Hou, F., Hu, Yj. et al. Application of distributed model predictive control based on neighborhood optimization in gauge–looper integrated system of tandem hot rolling. J. Iron Steel Res. Int. 30, 277–292 (2023). https://doi.org/10.1007/s42243-022-00838-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00838-9

Keywords

Navigation