Skip to main content
Log in

Numerical simulation of EMS position on flow, solidification and inclusion capture in slab continuous casting

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Electromagnetic stirring (EMS) is a well-known and widely used technology for controlling the fluid flow in continuous casting mold, and therein the selection of stirrer position is closely related to final product. To investigate the effect of stirrer position on initial solidification and inclusion capturing, a mathematical model coupling with electromagnetic field, turbulence flow, solidification, and inclusion movement was constructed. Through comparing the magnetic flux density, flow field and solidified shell thickness with measured data, the reliability of the mathematical model was proved. The uniform index has been introduced to judge the uniformity of solidified shell, and the washing effects of EMS on the numbers and distribution of captured inclusions were discussed. The results show that a diagonal jet flow toward the mold wide face has generated when EMS is applied, and upper EMS position can effectively improve the uniformity of temperature and the solidified shell within the mold. Meanwhile, due to the washing effect of EMS, the number of inclusions inside the solidified shell decreases, and the distribution of captured inclusions along the mold width changes evenly. Decreasing the stirrer position, the uniform index decreases firstly and then increases, and the probability of inclusion capture by solidified shell increases. Thus, the upper stirrer position is suggested, with which the uniformity of solidified shell and cleanliness of slab are rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B.G. Thomas, Steel Res. Int. 89 (2018) 1700312.

    Article  Google Scholar 

  2. S. Kunstreich, Rev. De Metall.-Cahiers D Inform. Tech. 100 (2003) 395–408.

    Google Scholar 

  3. D.Q. Jiang, R. Wang, Q. Zhang, Z.Q. Zhang, T.S. Tu, J. Wang, Z.M. Ren, J. Iron Steel Res. Int. 27 (2020) 141–147.

    Article  Google Scholar 

  4. B. Yang, A.Y. Deng, Y. Li, X.J. Xu, E.G. Wang, J. Iron Steel Res. Int. 26 (2019) 219–229.

    Article  Google Scholar 

  5. S.K. Yin, S. Luo, W.J. Zhang, W.L. Wang, M.Y. Zhu, J. Iron Steel Res. Int. 28 (2021) 424–436.

    Article  Google Scholar 

  6. J. Nakashima, J. Fukuda, A. Kiyose, T. Kawase, Y. Ohtani, M. Doki, K. Fujisaki, Tetsu-to-Hagane 93 (2007) 281–288.

  7. J. Nakashima, J. Fukuda, A. Kiyose, T. Kawase, Y. Ohtani, M. Dom, K. Fujisaki, Tetsu-to-Hagane 93 (2007) 565–574.

    Article  Google Scholar 

  8. K. Fujisaki, T. Ueyama, T. Toh, M. Uehara, S. Kobayashi, IEEE Trans. Magn. 34 (1998) 2120–2120.

    Article  Google Scholar 

  9. K. Fujisaki, S. Satoh, T. Yamada, IEEE Trans. Magn. 36 (2000) 1300–1304.

    Article  Google Scholar 

  10. Y. Yin, J. Zhang, B. Wang, Q. Dong, Ironmak. Steelmak. 46 (2019) 682–691.

    Article  Google Scholar 

  11. K. Okazawa, T. Toh, J. Fukuda, T. Kawase, M. Toki, ISIJ Int. 41 (2001) 851–858.

    Article  Google Scholar 

  12. B. Li, H. Lu, Y. Zhong, Z. Ren, Z. Lei, ISIJ Int. 60 (2020) 1204–1212.

    Article  Google Scholar 

  13. X. Deng, Q. Wang, C. Ji, H. Li, X. Shao, B. Liu, G. Zhu, Metall. Mater. Trans. B 51 (2020) 318–326.

    Article  Google Scholar 

  14. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, R. Chaudhary, Metall. Mater. Trans. B 45 (2013) 22–35.

    Article  Google Scholar 

  15. Z. Liu, L. Li, B. Li, M. Jiang, JOM 66 (2014) 1184–1196.

    Article  Google Scholar 

  16. Y. Yin, J. Zhang, H. Ma, Q. Zhou, Steel Res. Int. (2021) 2000582.

  17. B. Willers, M. Barna, J. Reiter, S. Eckert, ISIJ Int. 57 (2017) 468–477.

    Article  Google Scholar 

  18. W. Yamada, A. Kiyose, J. Fukuda, H. Tanaka, J.I. Nakashima, Ironmak. Steelmak. 30 (2013) 151–157.

    Article  Google Scholar 

  19. B. Ren, D. Chen, H. Wang, M. Long, Steel Res. Int. 86 (2015) 1104–1115.

    Article  Google Scholar 

  20. D. Jiang, M. Zhu, Steel Res. Int. 86 (2015) 993–1003.

    Article  Google Scholar 

  21. X. Wang, S. Zheng, Z. Liu, M. Zhu, Steel Res. Int. 91 (2020) 1900415.

    Article  Google Scholar 

  22. Y. Wang, L. Zhang, Metall. Mater. Trans. B 42 (2011) 1319–1351.

    Article  Google Scholar 

  23. H.B. Lu, C.G. Cheng, Y. Li, X.F. Qin, Y. Jin, J. Iron Steel Res. Int. 26 (2019) 926–940.

    Article  Google Scholar 

  24. V.R. Voller, A.D. Brent, C. Prakash, Int. J. Heat Mass Trans. 32 (1989) 1719–1731.

    Article  Google Scholar 

  25. V.R. Voller, C. Prakash, Int. J. Heat Mass Trans. 30 (1987) 1709–1719.

    Article  Google Scholar 

  26. W. Chen, Y. Ren, L. Zhang, JOM 70 (2018) 2968–2979.

    Article  Google Scholar 

  27. Y.B. Yin, J.M. Zhang, J. Iron Steel Res. Int. 29 (2022) 247–262.

    Article  Google Scholar 

  28. B. Li, F. Tsukihashi, ISIJ Int. 43 (2003) 923–931.

    Article  Google Scholar 

  29. X. Li, B. Li, Z. Liu, R. Niu, X. Huang, Steel Res. Int. 89 (2018) 1800113.

    Article  Google Scholar 

  30. C. Vives, R. Ricou, Metall. Mater. Trans. B. 16 (1985) 377–384.

    Article  Google Scholar 

  31. L. Zhang, Y. Wang, JOM 64 (2012) 1063–1074.

    Article  Google Scholar 

  32. Z. Liu, L. Li, B. Li, JOM 68 (2016) 2180–2190.

    Article  Google Scholar 

  33. Y. Miki, H. Ohno, Y. Kishimoto, S. Tanaka, Tetsu-to-Hagane 97 (2011) 423–432.

    Article  Google Scholar 

  34. B. Li, H. Lu, Z. Shen, X. Sun, Y. Zhong, Z. Ren, Z. Lei, ISIJ Int. 59 (2019) 2264–2271.

    Article  Google Scholar 

  35. K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, T. Wondrak, ISIJ Int. 50 (2010) 1134–1141.

    Article  Google Scholar 

  36. K. Timmel, S. Eckert, G. Gerbeth, Metall. Mater. Trans. B 42 (2011) 68–80.

    Article  Google Scholar 

  37. M. Javurek, P. Gittler, R. Rössler, B. Kaufmann, H. Preßlinger, Steel Res. Int. 76 (2005) 64–70.

    Article  Google Scholar 

  38. L. Wang, S. Yang, J. Li, S. Zhang, J. Ju, Metall. Mater. Trans. B 48 (2017) 805–818.

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the National Natural Science Foundation of China (Nos. U1860107 and 52074181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-sheng Lei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Hb., Zhong, Yb., Ren, Zm. et al. Numerical simulation of EMS position on flow, solidification and inclusion capture in slab continuous casting. J. Iron Steel Res. Int. 29, 1807–1822 (2022). https://doi.org/10.1007/s42243-022-00817-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00817-0

Keywords

Navigation