Skip to main content

Advertisement

Log in

Hydrogen-induced delayed fracture of Cu-containing high-strength bolt steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The hydrogen-induced delayed fracture (HIDF) behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.% Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution. It is shown that the addition of Cu is beneficial to enhance the HIDF resistance by ~ 13%. The observation of the fracture surface revealed that the area fraction of brittle crack initiation zone decreased remarkably for the Cu-added steel. Both the corrosion pit depth and the corrosion rate of the Cu-added steel in the Walpole solution are notably decreased, which is primarily because of the formation of a Cu-rich protective compact rust layer and slightly higher corrosion potential. As a result, the absorbed hydrogen content in that solution was also decreased by ~ 21%. It is concluded that the improvement in the HIDF resistance of the tested steel is primarily due to the increase in corrosion resistance and resultant decrease in the absorbed diffusible hydrogen content in the acidic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.J. Hui, Y.Q. Weng, H. Dong, Steels for high strength fasteners, Metallurgical Industry Press, Beijing, China, 2009.

    Google Scholar 

  2. N. Nanninga, J. Grochowsi, L. Heldt, K. Rundman, Corros. Sci. 52 (2010) 1237–1246.

    Article  Google Scholar 

  3. H.S. Han, K.H. Lee, S.H. Park, S. Park, M.K. Song, Eng. Fail. Anal. 48 (2015) 62–77.

    Article  Google Scholar 

  4. T. Kushida, H. Matsumoto, N. Kuratomi, T. Tsumura, F. Nakasato, T. Kudo, Tetsu-to-Hagané 82 (1996) 297–302.

    Article  Google Scholar 

  5. E. Akiyama, ISIJ Int. 52 (2012) 307–315.

    Article  Google Scholar 

  6. J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, C.S. Lee, Mater. Sci. Eng. A 505 (2009) 105–110.

    Article  Google Scholar 

  7. M. Kubota, T. Tarui, S. Yamasaki, T. Ochi, Nippon Steel Tech. Rep. 91 (2005) 62–66.

    Google Scholar 

  8. M. Takashima, Z. Iida, S. Tanaka, K. Tsukiyama, N. Ibaraki, Y. Namimura, Development of 1600 N/mm2 class ultra-high strength bolts, SAE Technical Paper, 2003, No. 2003–01–1179.

  9. M. Tada, K. Kikuchi, K. Tomita, T. Shiraga, ISIJ Int. 52 (2012) 281–285.

    Article  Google Scholar 

  10. T. Omura, ISIJ Int. 52 (2012) 267–273.

    Article  Google Scholar 

  11. T. Shiraga, Corros. Eng. 60 (2011) 188–194.

    Article  Google Scholar 

  12. E. Akiyama, K. Matsukado, M.Q. Wang, K. Tsuzaki, Corros. Sci. 52 (2010) 2758–2765.

    Article  Google Scholar 

  13. E.J. Song, S.W. Baek, S.H. Nahm, D.W. Suh, Met. Mater. Int. 24 (2018) 532–536.

    Article  Google Scholar 

  14. T. Depover, K. Verbeken, Corros. Sci. 112 (2016) 308–326.

    Article  Google Scholar 

  15. Y.S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, M.P. Moody, Science 355 (2017) 1196–1199.

    Article  Google Scholar 

  16. X.Y. Cheng, H. Li, X.B. Cheng, Micron 103 (2017) 22–28.

    Article  Google Scholar 

  17. E. Wallaert, T. Depover, M. Arafin, K. Verbeken, Metall. Mater. Trans. A 45 (2014) 2412–2420.

    Article  Google Scholar 

  18. H. Asahi, D. Hirakami, S. Yamasaki, ISIJ Int. 43 (2003) 527–533.

    Article  Google Scholar 

  19. H.Y. Zhao, P. Wang, J.X. Li, Int. J. Hydrogen Energy 46 (2021) 34983–34997.

    Article  Google Scholar 

  20. W.J. Hui, H. Dong, Y.Q. Weng, J. Shi, X.Z. Zhang, Acta Metall. Sin. 40 (2004) 1274–1280.

    Google Scholar 

  21. H.K.D.H. Bhadeshia, ISIJ Int. 56 (2016) 24–36.

    Article  Google Scholar 

  22. W.J. Hui, H.X. Zhang, Y.J. Zhang, X.L. Zhao, C.W. Shao, Mater. Sci. Eng. A 674 (2016) 615–625.

    Article  Google Scholar 

  23. T. Shiraga, N. Ishikawa, M. Ishiguro, E. Yamashita, S. Mizoguchi, Tetsu-to-Hagané 82 (1996) 777–782.

    Article  Google Scholar 

  24. I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, Y.K. Lee, Int. J. Hydrogen Energy 37 (2012) 9925–9932.

    Article  Google Scholar 

  25. Z.F. Wang, J.R. Liu, L.X. Wu, R.D. Han, Y.Q. Sun, Corros. Sci. 67 (2013) 1–10.

    Article  Google Scholar 

  26. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, D. de la Fuente, Corros. Sci. 87 (2014) 438–451.

    Article  Google Scholar 

  27. Q.F. Xu, K.W. Gao, W.T. Lv, X.L. Pang, Corros. Sci. 102 (2016) 114–124.

    Article  Google Scholar 

  28. H. Li, W.J. Hui, J.J. Wang, X.L. Zhao, Y.J. Zhang, Materials Protection 53 (2020) No. 11, 13–20.

    Google Scholar 

  29. Y. Namimura, Tetsu-to-Hagané 88 (2002) 600–605.

    Article  Google Scholar 

  30. Wu-yang Chu, Hydrogen damage and delayed fracture, Metallurgical Industry Press, Beijing, China, 1988.

    Google Scholar 

  31. K. Bergers, E. Camisão de Souza, I. Thomas, N. Mabho, J. Flock, Steel Res. Int. 81 (2010) 499–507.

    Article  Google Scholar 

  32. H. Song, J. Yoo, S.H. Kim, S.S. Sohn, M. Koo, N.J. Kim, S. Lee, Acta Mater. 135 (2017) 215–225.

    Article  Google Scholar 

  33. Y. Kimura, T. Hara, K. Tsuzaki, CAMP-ISIJ 14 (2001) 1307.

    Google Scholar 

  34. S.J. Li, E. Akiyama, K. Yuuji, K. Tsuzaki, N. Uno, B.P. Zhang, Sci. Technol. Adv. Mater. 11 (2010) 025005.

    Article  Google Scholar 

  35. T. Omura, H. Matsumoto, T. Hasegawa, Y. Miyakoshi, ISIJ Int. 56 (2016) 385–391.

    Article  Google Scholar 

  36. T. Hara, Corros. Eng. 60 (2011) 217–223.

    Google Scholar 

  37. Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz, Phys. Rev. B 84 (2011) 144121.

    Article  Google Scholar 

  38. N. Zan, H. Ding, X.F. Guo, Z.Y. Tang, W. Bleck, Int. J. Hydrogen Energy 40 (2015) 10687–10696.

    Article  Google Scholar 

  39. K. Takasawa, R. Ikesa, N. Ishikawa, R. Ishigaki, Int. J. Hydrogen Energy 37 (2012) 2669–2675.

    Article  Google Scholar 

  40. W.J. Hui, H. Dong, Y.Q. Weng, J. Shi, Y.H. Nie, Z.M. Chu, Y.B. Chen, Acta Metall. Sin. 40 (2004) 561–568.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52071010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jun Hui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Xl., Zhang, Cx., Zhang, Yj. et al. Hydrogen-induced delayed fracture of Cu-containing high-strength bolt steel. J. Iron Steel Res. Int. 30, 375–383 (2023). https://doi.org/10.1007/s42243-022-00809-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00809-0

Keywords

Navigation