Skip to main content
Log in

Mathematical model of burden distribution in bell-less top blast furnace

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The burden distribution in the shaft of blast furnace is known to affect the gas distribution, heat transfer, and chemical reactions inside the furnace. However, the internal layer structure of burden in the shaft cannot be directly measured. Hence, a mathematical model for evaluating burden profile and layer structure was established. A sensitivity analysis based on the model was implemented to elucidate the effect of some factors on the burden distribution, including the stockline height and the mass of central coke. The results show that the width of funnel zone widens with the increase in stockline height, and the mass percentage of ore to coke in this zone slightly increases. Besides, the mass of central coke shows a significant influence on the width of coke channel, and 2% of batch mass of coke is recommended to implement central coke charging operation. The model has been indirectly verified by the gas temperature in operating blast furnace and successfully applied to online evaluate burden distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Standish, Powder Technol. 45 (1985) 43–56.

    Article  Google Scholar 

  2. M. Hattori, B. Iino, A. Shimomura, H. Tsukiji, T. Ariyama, ISIJ Int. 33 (1993) 1070–1077.

    Article  Google Scholar 

  3. Y. Aminaga, Y. Kajiwara, T. Inada, T. Tanaka, K.I. Sato, Trans. ISIJ 27 (1987) 851–857.

    Article  Google Scholar 

  4. Y. Kajiwara, T. Jimbo, T. Joko, Y.I. Aminaga, T. Inada, Trans. ISIJ 24 (1984) 799–807.

    Article  Google Scholar 

  5. W.X. Xu, S.S. Cheng, Q. Niu, G.L. Zhao, Ironmak. Steelmak. 46 (2019) 105–112.

    Article  Google Scholar 

  6. J. Jimenez, J. Mochón, A. Formoso, J.S. de Ayala, ISIJ Int. 40 (2000) 114–120.

    Article  Google Scholar 

  7. J. Hinnelä, H. Saxén, ISIJ Int. 41 (2001) 142–150.

    Article  Google Scholar 

  8. Y.L. Yang, Y.X. Yin, D. Wunsch, S. Zhang, X.Z. Chen, X.L. Li, S.S. Cheng, M. Wu, K.Z. Liu, ISIJ Int. 57 (2017) 1350–1363.

    Article  Google Scholar 

  9. S. Nag, V.M. Koranne, Ironmak. Steelmak. 36 (2009) 371–378.

    Article  Google Scholar 

  10. J.I. Park, U.H. Baek, K.S. Jang, H.S. Oh, J.W. Han, ISIJ Int. 51 (2011) 1617–1623.

    Article  Google Scholar 

  11. J.I. Park, H.J. Jung, M.K. Jo, H.S. Oh, J.W. Han, Met. Mater. Int. 17 (2011) 485–496.

    Article  Google Scholar 

  12. T. Mitra, H. Saxén, Metall. Mater. Trans. B 45 (2014) 2382–2394.

    Article  Google Scholar 

  13. V.R. Radhakrishnan, K.M. Ram, J. Process Contr. 11 (2001) 565–586.

    Article  Google Scholar 

  14. H. Saxén, J. Hinnelä, Miner. Process. Extr. Metall. Rev. 25 (2004) 1–27.

    Article  Google Scholar 

  15. D. Fojtik, J. Tuma, P. Faruzel, Ironmak. Steelmak. 48 (2021) 1226–1238.

    Article  Google Scholar 

  16. P.Y. Shi, D. Fu, P. Zhou, C.Q. Zhou, Ironmak. Steelmak. 42 (2015) 756–762.

    Article  Google Scholar 

  17. D. Fu, Y. Chen, C.Q. Zhou, Appl. Math. Model. 39 (2015) 7554–7567.

    Article  Google Scholar 

  18. J. Xu, S.L. Wu, M.Y. Kou, L.H. Zhang, X.B. Yu, Appl. Math. Model. 35 (2011) 1439–1455.

    Article  Google Scholar 

  19. W.R. Ketterhagen, J.S. Curtis, C.R. Wassgren, B.C. Hancock, Powder Technol. 195 (2009) 1–10.

    Article  Google Scholar 

  20. T. Mitra, H. Saxén, Comput. Part. Mech. 3 (2016) 541–555.

    Article  Google Scholar 

  21. Y.W. Yu, H. Saxén, Powder Technol. 262 (2014) 233–241.

    Article  Google Scholar 

  22. Y. Xu, J. Xu, C.F. Sun, K.H. Ma, C. Shan, L.Y. Wen, S.F. Zhang, C.G. Bai, Powder Technol. 328 (2018) 245–255.

    Article  Google Scholar 

  23. J.L. Zhang, J.Y. Qiu, H.W. Guo, S. Ren, H. Sun, G.W. Wang, Z.K. Gao, Particuology 16 (2014) 167–177.

    Article  Google Scholar 

  24. Y.W. Yu, H. Saxén, Ironmak. Steelmak. 38 (2011) 432–441.

    Article  Google Scholar 

  25. Y.W. Yu, H. Saxén, ISIJ Int. 52 (2012) 788–796.

    Article  Google Scholar 

  26. J.Y. Qiu, D.C. Ju, J.L. Zhang, Y.S. Xu, Powder Technol. 314 (2017) 218–231.

    Article  Google Scholar 

  27. H. Li, H. Saxén, W. Liu, Z. Zou, L. Shao, Metals 9 (2019) 1003.

    Article  Google Scholar 

  28. Y.C. Liu, Burden distribution in blast furnace, 4th Ed., Metallurgical Industry Press, Beijing, China, 2012.

    Google Scholar 

  29. S. Nag, A. Gupta, S. Paul, D.J. Gavel, B. Aich, ISIJ Int. 54 (2014) 1517–1520.

    Article  Google Scholar 

  30. F.T. Ma, J.L. Zhang, Y.C. Liu, Iron and Steel 52 (2017) No. 6, 18–25.

    Google Scholar 

  31. H. Nishio, T. Ariyama, Tetsu-to-Hagané 68 (1982) 2330–2337.

    Article  Google Scholar 

  32. M. Ichida, M. Takao, K. Kunitomo, S. Matsuzaki, T. Deno, K. Nishihara, ISIJ Int. 36 (1996) 493–502.

    Article  Google Scholar 

  33. P. Zhou, P.Y. Shi, Y.P. Song, K.L. Tang, D. Fu, C.Q. Zhou, J. Iron Steel Res. Int. 23 (2016) 765–771.

    Article  Google Scholar 

  34. X. Yu, Y. Shen, Powder Technol. 361 (2020) 124–135.

    Article  Google Scholar 

  35. G.L. Zhao, S.S. Cheng, W.X. Xu, C. Li, Iron and Steel 51 (2016) No. 6, 10–18.

    Google Scholar 

  36. C.R. Che, Iromaking (1992) No. 2, 14–17.

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (U1960205) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Zuo.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Js., Zuo, Hb., Wang, Jx. et al. Mathematical model of burden distribution in bell-less top blast furnace. J. Iron Steel Res. Int. 30, 216–226 (2023). https://doi.org/10.1007/s42243-022-00808-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00808-1

Keywords

Navigation