Skip to main content
Log in

Comparison of semi-coke with traditional pulverized coal injection and iron ore sintering fuels based on chemical structure and combustion behavior

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Substantial semi-coke has been produced through the industrialized low-temperature pyrolysis process, which has great potential as an alternative fuel for pulverized coal injection (PCI) and iron ore sintering. X-ray diffraction, Raman spectroscope, and thermal analysis were used to compare the carbon chemical structure and combustion reactivity of semi-coke, pulverized coal, and coke breeze. The results show that the average volatile matter content in 46 types of semi-cokes is 8.94 wt.%. The fluctuation range of the characteristic parameters of the semi-coke chemical structure is d002 = (0.352–0.379) nm and AD1/AG = (2.51–7.92), while the fluctuation range of the characteristic parameters of pulverized coal is d002 = (0.348–0.373) nm and AD1/AG = (1.71–9.03) (where d002 means the interlayer spacing between the aromatic planes, and AD1/AG is an index that characterizes the degree of disorder of the char structure through the area ratio of the defect peak band D1 to the perfect graphite peak band G); the overlap between these ranges is relatively high. Contrarily, the fluctuation range of the characteristic parameters of coke breeze is d002 = (0.343–0.350) nm and AD1/AG = (0.75–2.51), which is markedly different from that of semi-coke. Semi-coke combustion reactivity is close to that of pulverized coal, but considerably better than that of coke breeze. In terms of chemical structure and combustion reactivity, semi-coke can be used as an alternative fuel for PCI; however, when used for sintering alternative fuel, matching of the heat supply and demand in the later sintering stage must be scrupulously analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.M. Sun, X.J. Ning, J.L. Zhang, K.J. Li, G.W. Wang, H.Y. Wang, China Metallurgy 28 (2018) No. 3, 1–8.

    Google Scholar 

  2. J.H. Kim, R.G. Kim, G.B. Kim, C.H. Jeon, Exp. Thermal Fluid Sci. 79 (2016) 266–274.

    Article  Google Scholar 

  3. L.M. Lu, V. Sahajwalla, D. Harris, Metall. Mater. Trans. B 32 (2001) 811–820.

    Article  Google Scholar 

  4. Y. Wang, Z.L. Zhang, Coal Quality Technol. (2018) No. 2, 1–5.

    Google Scholar 

  5. A.D.S. Machado, A.S. Mexias, A.C.F. Vilela, E. Osorio, Fuel 114 (2013) 224–228.

    Article  Google Scholar 

  6. J.Y. He, C. Zou, J.X. Zhao, C. Ma, X.R. Zhang, J. Iron Steel Res. Int. 26 (2019) 1273–1284.

    Article  Google Scholar 

  7. C.Y. Tsai, A.W. Scaroni, Fuel 66 (1987) 1400–1406.

    Article  Google Scholar 

  8. B. Wang, L. Sun, S. Su, J. Xiang, S. Hu, H. Fei, Energy Fuels 26 (2012) 1565–1574.

    Article  Google Scholar 

  9. C.D. Sheng, Fuel 86 (2007) 2316–2324.

    Article  Google Scholar 

  10. B. Tian, Y.Y. Qiao, Y.Y. Tian, Q. Liu, J. Anal. Appl. Pyrolysis 121 (2016) 376–386.

    Article  Google Scholar 

  11. C. Ma, C. Zou, J.X. Zhao, R.M. Shi, X.M. Li, J.Y. He, X.R. Zhang, Energy Fuels 33 (2019) 6098–6112.

    Article  Google Scholar 

  12. Y. Liu, X.F. He, F.S. Yang, Y.G. Zhang, X.B. Ren, A.N. Zhou, J. China Coal Soc. 40 (2015) 497–504.

    Google Scholar 

  13. X.Y. Zhang, B.X. Zhou, D.H. An, L. Cui, Y. Zheng, Y. Dong, J. China Coal Soc. 44 (2019) 604–610.

    Google Scholar 

  14. A. Yoshida, Y. Kaburagi, Y. Hishiyama, Carbon 44 (2006) 2333–2335.

    Article  Google Scholar 

  15. C. Zou, J.Y. He, J.X. Zhao, X.M. Li, R.M. Shi, C. Ma, Y. Kang, X.R. Zhang, Metall. Mater. Trans. B 50 (2019) 2304–2318.

    Article  Google Scholar 

  16. G. Rantitsch, A. Bhattacharyya, J. Schenk, N.K. Lünsdorf, Int. J. Coal Geol. 130 (2014) 1–7.

    Article  Google Scholar 

  17. H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, Y. Sato, Fuel 83 (2004) 2427–2433.

    Article  Google Scholar 

  18. M.F. Li, F.G. Zeng, F.H. Qi, B.L. Sun, Spectroscopy and Spectral Analysis 29 (2009) 2446–2449.

    Google Scholar 

  19. X.H. Liu, Y. Zheng, Z.H. Liu, H.R. Ding, X.H. Huang, C.G. Zheng, Fuel 157 (2015) 97–106.

    Article  Google Scholar 

  20. Q.H. Wang, R. Zhang, Z.Y. Luo, M.X. Fang, K.F. Cen, Energy Technol. 4 (2016) 543–550.

    Article  Google Scholar 

  21. H.J. Seong, A.L. Boehman, Energy Fuels 27 (2013) 1613–1624.

    Article  Google Scholar 

  22. B. Hu, C. Zou, J.X. Zhao, C. Ma, J.Y. He, X.M. Li, Coal Conversion 41 (2018) No. 1, 1–6.

    Google Scholar 

  23. L. He, W.Z. Shang, J.L. Liu, J.L. Hou, Y. Ma, S.Y. Li, Clean Coal Technol. 21 (2015) No. 6, 59–62.

    Google Scholar 

  24. Q. Xie, D.C. Liang, M. Tian, J.T. Dang, J.C. Liu, M.S. Yang, J. Fuel Chem. Technol. 43 (2015) 798–805.

    Google Scholar 

  25. X.J. Ning, W. Liang, J.L. Zhang, G.W. Wang, Y.J. Li, C.H. Jiang, Int. J. Miner. Metall. Mater. 26 (2019) 973–982.

    Article  Google Scholar 

  26. Q.L. Shi, B.T. Qin, Q. Bi, B. Qu, Fuel 226 (2018) 307–315.

    Article  Google Scholar 

  27. S. Dong, N. Paterson, S.G. Kazarian, D.R. Dugwell, R. Kandiyoti, Energy Fuels 21 (2007) 3446–3454.

    Article  Google Scholar 

  28. G.W. Liu, P. Dong, Y.F. Han, R.S. Bie, J. Harbin Inst. Technol. 43 (2011) No. 1, 104–108.

    Google Scholar 

  29. R.H. Essenhigh, M.K. Misra, S.W. Shaw, Combust. Flame 77 (1989) 3–30.

    Article  Google Scholar 

  30. X.N. Zhao, L. Ding, Q.H. Guo, B. Dong, D.H. Wu, Clean Coal Technol. 22 (2016) No. 6, 52–55.

    Google Scholar 

  31. W.K. Zhu, W.L. Song, W.G. Lin, Energy Fuels 22 (2008) 2482–2487.

    Article  Google Scholar 

  32. M. Zhong, S.Q. Gao, Z.K. Zhang, J.R. Yue, G.W. Xu, Chin. J. Process Eng. 12 (2012) 231–238.

    Google Scholar 

  33. V. Suresh Babu, M.S. Seehra, Carbon 34 (1996) 1259–1265.

  34. W. Huo, S.Q. Zhong, Coal Conversion 40 (2017) No. 1, 8–12.

    Google Scholar 

  35. C. Zou, Y. She, R.M. Shi, Fuel Process. Technol. 190 (2019) 1–12.

    Article  Google Scholar 

  36. Y.M. Yang, J.Z. Liu, J. Wang, J. Cheng, Z.H. Wang, K.F. Cen, Energy Fuels 32 (2018) 1297–1308.

    Article  Google Scholar 

  37. X.R. Zhang, C. Zou, J.X. Zhao, C. Ma, B. Hu, S.W. Liu, J.Y. He, J. Fuel Chem. Technol. 47 (2019) 1288–1297.

    Google Scholar 

  38. J.G. Zhang, Z.G. Sun, Q. Guo, X.J. Wang, G.S. Yu, H.F. Liu, F.C. Wang, J. Fuel Chem. Technol. 45 (2017) 129–137.

    Google Scholar 

  39. D.D. Liu, J.H. Gao, S.H. Wu, Y.K. Qin, J. Harbin Inst. Technol. 48 (2016) No. 7, 39–45.

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 51374166 and 51704224) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Jy., Zou, C., Zhao, Jx. et al. Comparison of semi-coke with traditional pulverized coal injection and iron ore sintering fuels based on chemical structure and combustion behavior. J. Iron Steel Res. Int. 29, 725–740 (2022). https://doi.org/10.1007/s42243-021-00726-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00726-8

Keywords

Navigation