Skip to main content

Advertisement

Log in

Effect of strain rate on fracture behaviour of Cr18Ni11Ti stainless steel at high temperatures

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of strain rate on the fracture behaviour of Cr18Ni11Ti stainless steel at high temperatures was analysed. The steel was subjected to solid solution treatment at 1050 °C and ageing at 650 °C for 24 h. The high-temperature tensile properties of Cr18Ni11Ti stainless steel were subsequently investigated via high-temperature tensile testing at 650 °C and different strain rates (1.43 × 10–1, 1.43 × 10–2, 1.43 × 10–3, 1.43 × 10–4, and 1.43 × 10–5 s−1). The microstructure, precipitated phase, tensile fracture surface, and dislocation of the experimental steel were analysed by scanning electron microscopy, transmission electron microscopy and energy spectrometry. The results show that Cr18Ni11Ti stainless steel is mainly austenite, with a large number of twin crystals, chromium-rich precipitated phase and composite precipitated phases of TiC and AlMgCaO. With decreases in strain rate, the yield strength, ultimate tensile strength, and reduction in area also decrease. When the strain rate is high, obvious necking and ductile fracture occur in the experimental steel. However, when the strain rate is reduced to 1.43 × 10–5 s−1, the necking phenomenon is not obvious and intergranular brittle fracture appears. Greater segregation of P and S contents at grain boundaries, or dislocation motion creep and grain-boundary sliding creep, leads to brittle fracture of the steel at lower strain rates of 1.43 × 10–4 to 1.43 × 10–5 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Aletdinov, S. Mironov, G.F. Korznikova, T. Konkova, R.G. Zaripova, M.M. Myshlyaev, S.L. Semiatin, Metall. Mater. Trans. 50 (2019) 1346–1357.

    Article  Google Scholar 

  2. X.R. Chen, G.G. Cheng, Y.Y. Hou, J.Y. Li, J.X. Pan, J. Iron Steel Res. Int. 27 (2020) 913–921.

    Article  Google Scholar 

  3. A.A. Tiamiyu, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 711 (2018) 233–249.

    Article  Google Scholar 

  4. W. Li, H.T. Chen, C. Li, W.Y. Huang, J. Chen, L. Zuo, Y.J. Ren, J.J. He, S.D. Zhang, Mater. Des. 205 (2021) 109729.

    Article  Google Scholar 

  5. E. Viyanit, S. Keawkumsai, K. Wongpinkeaw, N. Bunchoo, W. Khonraeng, T. Trachoo, Th. Boellinghaus, Eng. Fail. Anal. 100 (2019) 288–299.

    Article  Google Scholar 

  6. H.A. Rezai, M.S. Ghazani, B. Eghbali, Mater. Sci. Eng. A 736 (2018) 364–374.

    Article  Google Scholar 

  7. M.S. Ghazani, B. Eghbali, Mater. Sci. Eng. A 730 (2018) 380–390.

    Article  Google Scholar 

  8. S. Pour-Ali, M. Weiser, N.T. Nguyen, A. Kiani-Rashid, A. Babakhani, S. Virtanen, Corros. Sci. 163 (2020) 108282.

    Article  Google Scholar 

  9. J.M. Wang, H.Z. Su, K. Chen, D.H. Du, L.F. Zhang, Z. Shen, Corros. Sci. 158 (2019) 108079.

    Article  Google Scholar 

  10. R.X. Sun, L. Xu, W.B. Zhao, Light Metals (2012) No. 8, 59–61.

    Google Scholar 

  11. H.M. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, D.Y. Li, Int. J. Plast. 107 (2018) 207–222.

    Article  Google Scholar 

  12. X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater. Sci. Eng. A 710 (2018) 1–9.

    Article  Google Scholar 

  13. T.D. Xu, Z.J. Liu, H.Y. Yu, K. Wang, Acta Phys. Sin. 63 (2014) 228101.

    Article  Google Scholar 

  14. Z.J. Wang, H.L. Ding, Z.D. Xiao, C.X. Yang, C.C. Xiang, Mater. Sci. Eng. A 826 (2021) 141997.

    Article  Google Scholar 

  15. A.A. Tiamiyu, U. Eduok, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 745 (2019) 1–9.

    Article  Google Scholar 

  16. W. Huo, H. Zhou, F. Feng, X. Hu, Z. Xie, J. Jiang, Mater. Sci. Eng. A 689 (2017) 366–369.

    Article  Google Scholar 

  17. Q.L. Yong, Second phase of iron and steel materials, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  18. J.T. Xie, Q.J. Wang, L.Y. Wang, Forging & Stamping Technology 44 (2019) 178–182.

    Google Scholar 

  19. T. Xu, S. Wang, X. Li, M. Wu, W. Wang, N. Mitsuzaki, Z. Chen, Mater. Sci. Eng. A 770 (2020) 138574.

    Article  Google Scholar 

  20. S.V. Astafurov, G.G. Maier, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko, E.G. Astafurova, Mater. Sci. Eng. A 756 (2018) 365–372.

    Article  Google Scholar 

  21. S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711 (2018) 22–28.

    Article  Google Scholar 

  22. X. Bai, S.J. Wu, L.J. Wei, S. Luo, X. Xie, P.K. Liaw, J. Iron Steel Res. Int. 25 (2018) 767–775.

    Article  Google Scholar 

  23. F. Ozturk, A. Polat, S. Toros, R.C. Picu, J. Iron Steel Res. Int. 20 (2013) No. 6, 68–74.

    Article  Google Scholar 

  24. S.S. Gvk, M.J. Tan, Z.Y. Liu, Met. Mater. Int. 25 (2019) 1047–1062.

    Article  Google Scholar 

  25. A. Alomari, N. Kumar, K.L. Murty, Metall. Mater. Trans. A 50 (2019) 641–654.

    Article  Google Scholar 

  26. T.D. Xu, Science in China 46 (2003) 373–380.

    Article  Google Scholar 

  27. T. Xu, K. Wang, S. Song, Metals 11 (2021) 1733.

    Article  Google Scholar 

  28. T.D. Xu, Scripta Mater. 46 (2002) 759–763.

    Article  Google Scholar 

  29. T.D. Xu, S.H. Song, Acta Metall. 37 (1989) 2499–2506.

    Article  Google Scholar 

  30. T.D. Xu, B.Y. Cheng, Prog. Mater. Sci. 49 (2004) 109–208.

    Article  Google Scholar 

  31. T. Shinoda, T. Nakamura, Acta Metall. 29 (1981) 1631–1636.

    Article  Google Scholar 

  32. D.D. Sun. T. Yamane, K. Hirao, J. Mater. Sci. 26 (1991) 689–694.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 51871064 and 51971164)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-li Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Xl., Huang, Ch., Jia, J. et al. Effect of strain rate on fracture behaviour of Cr18Ni11Ti stainless steel at high temperatures. J. Iron Steel Res. Int. 29, 1004–1011 (2022). https://doi.org/10.1007/s42243-021-00715-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00715-x

Keywords

Navigation