Skip to main content
Log in

Novel method for improving iron recovery from electric arc furnace slag: on-site hot modification

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The iron element in electric arc furnace (EAF) slag is extremely difficult to recycle due to the low specific magnetic susceptibility of the RO phase (a solid solution of FeO, MgO, CaO, and MnO). Landfilling EAF slag is strictly forbidden for environmental consideration because of poisonous Cr6+ leaching. The original RO phase could be transformed to a spinel structure, whose specific magnetic susceptibility is much higher than that of other minerals, through hot modification, resulting in significantly increased iron recovery by magnetic separation. Precipitation of spinel crystals encloses chromium, such that iron and chromium could be recovered simultaneously. The chromium in obtained iron concentrates is considerably useful for stainless steel making rather than polluting the environment. As a result, recovering iron and chromium is truly beneficial for cleaner production. Hot modification of EAF slag should be conducted at 1500–1600 °C for at least 60 min to guarantee homogeneous liquid slag. The liquid slag was poured onto an iron mold to obtain modified slag (MS) through air quenching. MS was characterized by thermodynamic analysis, X-ray diffraction, and scanning electron microscopy combined with energy-dispersive spectroscopy to correlate the relationship between mineral structures and iron recovery. The iron recovery rate of MS first increased and then decreased with increasing modifier. It was less than 10% when the modifier addition amount was below 12 wt.%, but it increased rapidly as the modifier addition amount increased from 16 to 24 wt.%, mainly due to spinel formation. The highest iron recovery rate was 81.9% when the modifier amount reached 20 wt.%. Meanwhile, Cr6+ was enriched in the spinel phase but was not observed in other minerals. Industrial tests were performed on-site with the modifier ranging from 12 to 18 wt.% because additional heat was not provided during the tests. Results showed that MS with 18 wt.% modifier addition exhibited an iron recovery rate of 61.0%, much higher than that (34.6%) of the original slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Durinck, F. Engström, S. Arnout, J. Heulens, P.T. Jones, B. Björkman, B. Blanpain, P. Wollants, Resour. Conserv. Recycl. 52 (2008) 1121–1131.

  2. V. Mymrin, E.K. Aibuldinov, K. Alekseev, V. Petukhov, M.A. Avanci, A. Kholodov, A. Taskin, R.E. Catai, A. Iarozinski N, J. Clean. Prod. 231 (2019) 1428–1436.

  3. J. Zhao, P. Yan, D. Wang, J. Clean. Prod. 156 (2017) 50–61.

  4. J. Guo, Y. Bao, M. Wang, Waste Manage. 78 (2018) 318–330.

  5. N.M. Piatak, M.B. Parsons, R.R. Seal II, Appl. Geochem. 57 (2015) 236–266.

  6. L. Cao, W. Shen, J. Huang, Y. Yang, D. Zhang, X. Huang, Z. Lv, X. Ji, J. Clean. Prod. 217 (2019) 520–529.

  7. V.J. Ferreira, A. Sáez-De-Guinoa Vilaplana, T. García-Armingol, A. Aranda-Usón, C. Lausín-González, A.M. López-Sabirón, G. Ferreira, J. Clean. Prod. 130 (2016) 175–186.

  8. L. Muhmood, S. Vitta, D. Venkateswaran, Cem. Concr. Res. 39 (2009) 102–109.

  9. I. Liapis, I. Papayianni, J. Hazard. Mater. 283 (2015) 89–97.

  10. Z.S. Zhang, F. Lian, L.J. Ma, Y.S. Jiang, J. Iron Steel Res. Int. 22 (2015) No. 1, 15–20.

  11. X. Lu, Y. Li, S. Ma, W.B. Dai, D.Q. Cang, Chin. J. Eng. 38 (2016) 1386–1392.

  12. X. Lu, W.B. Dai, X.M. Liu, D.Q. Cang, L. Zhou, Metall. Res. Technol. 116 (2019) 217.

  13. W.B. Dai, Y. Li, D.Q. Cang, X. Lu, G.Z. Zhao, J.X. Guo, J. Clean. Prod. 172 (2018) 169–177.

  14. Y. Li, W.B. Dai, J. Clean. Prod. 175 (2018) 176–189.

  15. P. Xue, D. He, A. Xu, Z. Gu, Q. Yang, F. Engström, B. Björkman, J. Alloy. Compd. 712 (2017) 640–648.

  16. J. Li, Q. Yu, J. Wei, T. Zhang, Cem. Concr. Res. 41 (2011) 324–329.

  17. V. Shatokha, A. Semykina, J. Nakano, S. Sridhar, S. Seetharaman, J. Min. Metall. Sect. B 49 (2013) 169–174.

  18. D. Mombelli, C. Mapelli, S. Barella, A. Gruttadauria, G. Le Saout, E. Garcia-Diaz, J. Hazard. Mater. 279 (2014) 586–596.

  19. L.H. Cao, C.J. Liu, Q. Zhao, M.F. Jiang, J. Iron Steel Res. Int. 24 (2017) 258–265.

  20. X.L. Cheng, K. Zhao, Y.H. Qi, X.F. Shi, C.L. Zhen, J. Iron Steel Res. Int. 20 (2013) No. 3, 24–29, 35.

  21. M.F. Jiang, Y.Y. Cui, D.Y. Wang, Y. Min, C.J. Liu, J. Iron Steel Res. Int. 20 (2013) No. 1, 1–6, 20.

  22. W.B. Dai, Y. Li, D.Q. Cang, Z.B. Liu, Y. Fan, ISIJ Int. 54 (2014) 2672–2677.

  23. X. Lu, Y. Li, W. Dai, D. Cang, Adv. Appl. Ceram. 115 (2016) 13–20.

  24. G.Z. Zhao, Y. Li, W.B. Dai, D.Q. Cang, J. Ceram. Soc. Jpn. 124 (2016) 247–250.

  25. M. Kühn, P. Drissen, H. Schrey, in: H. Motz (Eds.), Proceedings of 2nd European Slag Conference, Düsseldorf, Germany, 2000, pp. 125–135.

  26. M. Kühn, D. Mudersbach, in: C. Ryman (Eds.), Proceedings of the 2nd International Conference on Process Development in Iron and Steelmaking (ScanMet II), Bergsmannen med Jernkontorets Annaler, Lulea, Sweden, 2004, pp. 369–377.

  27. R.I. Iacobescu, G.N. Angelopoulos, P.T. Jones, B. Blanpain, Y. Pontikes, J. Clean. Prod. 112 (2016) 872–881.

  28. C. Liu, S. Huang, P. Wollants, B. Blanpain, M. Guo, Metall. Mater. Trans. B 48 (2017) 1602–1612.

  29. H.I. Gomes, W.M. Mayes, H.A. Baxter, A.P. Jarvis, I.T. Burke, D.I. Stewart, M. Rogerson, J. Clean. Prod. 202 (2018) 401–412.

  30. H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, H. Chen, Procedia Environ. Sci. 16 (2012) 791–801.

  31. W.T. Kuo, C.Y. Shu, Constr. Build. Mater. 94 (2015) 488–493.

  32. A. Semykina, V. Shatokha, S. Seetharaman, Ironmak. Steelmak. 37 (2010) 536–540.

  33. A. Semykina, I. Dzhebian, V. Shatokha, Steel Res. Int. 83 (2012) 1129–1134.

  34. D. Durinck, P.T. Jones, B. Blanpain, P. Wollants, G. Mertens, J. Elsen, J. Am. Ceram. Soc. 90 (2007) 1177–1185.

  35. I. Strandkvist, K. Pålsson, A. Andersson, J. Olofsson, A. Lennartsson, C. Samuelsson, F. Engström, Appl. Sci. 10 (2020) 35.

Download references

Acknowledgements

This work was financially supported by Sichuan Province Science and Technology Program (201904a05020008), Anhui Province Science and Technology Program (2019YFSY0029), and the Open Project Funding from State Key Laboratory of Solid Waste Reuse for Building Materials (No. SWR-2017-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-fei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Huang, Xl., Wei, Rf. et al. Novel method for improving iron recovery from electric arc furnace slag: on-site hot modification. J. Iron Steel Res. Int. 29, 1224–1235 (2022). https://doi.org/10.1007/s42243-021-00713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00713-z

Keywords

Navigation