Skip to main content
Log in

Analysis of cracks origin behaviors during sulfide stress corrosion (SSC) in HSLA steel at different temperatures by electrochemical noise

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The sulfide stress corrosion (SSC) behaviors of the high strength low alloy steel at the different temperatures were investigated by the microstructural observation and electrochemical noise (EN) analysis. With the corrosion temperature increasing from 20 to 40 °C, SSC ruptured time is prolonged. The increase in corrosion temperature results in the decrease of the saturation solubility of H2S in the solution and thus increases pH value of solution. The increase in corrosion temperature decreases the size of the holes and cracks in the corrosion product film on the surface of the sample, which is due to the formation of the dense FeS corrosion product film. The current kurtosis results indicate that the time for the first occurrence of crack initiation is postponed by the increase in the corrosion temperature. The standard deviation of current noise signals, current kurtosis, power spectral density and energy distribution plot results shows a great consistency, which suggests that EN analysis method can reflect SSC behaviors in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.F. Porter, P.E. Repas, JOM 34 (1982) 14–21.

    Article  Google Scholar 

  2. N.J. Kim, JOM 35 (1983) 21–27.

    Article  Google Scholar 

  3. Y. Shao, C. Liu, Z. Yan, H. Li, Y. Liu, J. Mater. Sci. Technol. 34 (2018) 737–744.

    Article  Google Scholar 

  4. X. Li, L. Shi, Y. Liu, K. Gan, C. Liu, Mater. Sci. Eng. A 772 (2020) 138683.

    Article  Google Scholar 

  5. B. Beidokhti, A. Dolati, A.H. Koukabi, Mater. Sci. Eng. A 507 (2009) 167–173.

    Article  Google Scholar 

  6. M. Al-Mansour, A.M. Alfantazi, M. El-boujdaini, Mater. Des. 30 (2009) 4088–4094.

    Article  Google Scholar 

  7. M.C. Zhao, B. Tang, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 34 (2003) 1089–1096.

    Article  Google Scholar 

  8. P.R. Rhodes, Corrosion 57 (2001) 923–966.

    Article  Google Scholar 

  9. J.M. Zhang, W.H. Sun, S. Hao, J. Iron Steel Res. Int. 17 (2010) No. 10, 63–67.

    Article  Google Scholar 

  10. M.J. Kim, S.H. Lee, J.G. Kim, J.B. Yoon, Corrosion 66 (2010) 125005.

    Article  Google Scholar 

  11. S.W. Ciaraldi, Corrosion 40 (1984) 77–81.

    Article  Google Scholar 

  12. R.A. Carneiro, R.C. Ratnapuli, V.D.F.C. Lins, Mater. Sci. Eng. A 357 (2003) 104–110.

    Article  Google Scholar 

  13. X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 22 (2015) 937–942.

    Article  Google Scholar 

  14. H. Ma, C. Du, Z. Liu, Y. Li, X. Li, Acta Metall. Sin. 55 (2019) 469–479.

    Google Scholar 

  15. D.H. Xia, Y. Behnamian, J.L. Luo, J. Electrochem. Soc. 166 (2019) C49–C64.

    Article  Google Scholar 

  16. D.H. Xia, J. Wang, Z. Qin, Z. Gao, Z. Wu, J. Wang, L. Yang, W. Hu, J.L. Luo, Mater. Chem. Phys. 233 (2019) 133–140.

    Article  Google Scholar 

  17. E. Quadrini, Mater. Chem. Phys. 20 (1988) 73–85.

    Article  Google Scholar 

  18. S. Gao, P. Jin, B. Brown, D. Young, S. Nešić, M. Singer, Corrosion 73 (2017) 1188–1191.

    Article  Google Scholar 

  19. L. Khaksar, G. Whelan, J. Shirokoff, Int. J. Corros. 2016 (2016) 1025261.

    Article  Google Scholar 

  20. P.C. Okonkwo, M.H. Sliem, R.A. Shakoor, A.M.A. Mohamed, A.M. Abdullah, J. Mater. Eng. Perform. 26 (2017) 3775–3783.

    Article  Google Scholar 

  21. C.J.O. Alonso, M.A. Lucio-Garcia, I.A. Hermoso-Diaz, J.G. Chacon-Nava, A. Martinez-Villafane, J.G. Gonzalez-Rodriguez, Int. J. Electrochem. Sci. 9 (2014) 6717–6733.

    Google Scholar 

  22. J. Kovač, M. Leban, A. Legat, Electrochim. Acta 52 (2007) 7607–7616.

    Article  Google Scholar 

  23. D.H. Xia, S. Song, L. Tao, Z. Qin, Z. Wu, Z. Gao, J. Wang, W. Hu, Y. Behnamian, J.L. Luo, J. Mater. Sci. Technol. 53 (2020) 146–162.

    Article  Google Scholar 

  24. X. Li, J. Song, K. Gan, D.H. Xia, Z. Gao, C. Liu, Y. Liu, J. Electroanal. Chem. 876 (2020) 114480.

    Article  Google Scholar 

  25. C. Mao, C. Liu, L. Yu, H. Li, Y. Liu, Mater. Des. 197 (2021) 109252.

    Article  Google Scholar 

  26. N. Standard, TM0177-2016 Labortory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments, NACE International: Houston, TX, USA, 2016.

    Google Scholar 

  27. D.H. Xia, S. Song, Y. Behnamian, W. Hu, Y.F. Cheng, J.L. Luo, F. Huet, J. Electrochem. Soc. 167 (2020) 081507.

    Article  Google Scholar 

  28. Y. Teng, Chinese journal of Arid Environmental Monitoring 8 (1994) No. 1, 11–14.

    Google Scholar 

  29. H.Y. Ma, X.L. Cheng, S.H. Chen, C. Wang, J.P. Zhang, H.Q. Yang, J. Electroanal. Chem. 451 (1998) 11–17.

    Article  Google Scholar 

  30. H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, L. Niu, Corros. Sci. 42 (2000) 1669–1683.

    Article  Google Scholar 

  31. H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, D. Zhang, Corros. Sci. 144 (2018) 145–162.

    Article  Google Scholar 

  32. H. Tian, J. Xin, Y. Li, X. Wang, Z. Cui, Corros. Sci. 158 (2019) 108089.

    Article  Google Scholar 

  33. D. Rickard, G.W. Luther, Chem. Rev. 107 (2007) 514–562.

    Article  Google Scholar 

  34. F.H. Meyer, O.L. Riggs, R.L. McGlasson, J.D. Sudbury, Corrosion 14 (1958) 69–75.

    Article  Google Scholar 

  35. W. Hao, Z. Liu, W. Wu, X. Li, C. Du, D. Zhang, Mater. Sci. Eng. A 710 (2017) 318–328.

    Article  Google Scholar 

  36. U. Bertocci, C. Gabrielli, F. Huet, M. Keddam, J. Electrochem. Soc. 144 (1997) 31–37.

    Article  Google Scholar 

  37. Y.J. Tan, S. Bailey, B. Kinsella, Corros. Sci. 38 (1996) 1681–1695.

    Article  Google Scholar 

  38. S. Reid, G.E.C. Bell, G.L. Edgemon, The use of skewness, kurtosis and neural networks for determining corrosion mechanism from electrochemical noise data, NACE International, Houston, US, 1998.

    Google Scholar 

  39. R.A. Cottis, M.A.A. Al-Awadhi, H. Al-Mazeedi, S. Turgoose, Electrochim. Acta 46 (2001) 3665–3674.

    Article  Google Scholar 

  40. K. Hladky, L.J. Dawson, Corros. Sci. 22 (1982) 231–237.

    Article  Google Scholar 

  41. J. Flis, J.L. Dawson, J. Gill, G.C. Wood, Corros. Sci. 32 (1991) 877–892.

    Article  Google Scholar 

  42. J.C.Uruchurtu, J.L. Dawson, Corrosion 43 (1987) 19–26.

    Article  Google Scholar 

  43. C. Ma, S. Song, Z. Gao, J. Wang, W. Hu, Y. Behnamian, D.H. Xia, Corros. Eng. Sci. Technol. 52 (2017) 432–440.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 51975404, 52034004 and 52171123) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-xi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xh., Liu, Cx., He, B. et al. Analysis of cracks origin behaviors during sulfide stress corrosion (SSC) in HSLA steel at different temperatures by electrochemical noise. J. Iron Steel Res. Int. 29, 1836–1845 (2022). https://doi.org/10.1007/s42243-021-00704-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00704-0

Keywords

Navigation