Skip to main content
Log in

A promising method to recover spent V2O5–WO3/TiO2 catalyst: treatment by vanadium–titanium magnetite sintering process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A large number of spent selective catalytic reduction (SCR) denitration catalysts are produced after the ultra-low emission transformation of coal-fired power plants in China. According to the China’s “Directory of National Hazardous Wastes (Version 2021)”, these spent vanadium–tungsten–titanium catalysts are classified as “HW50” hazardous waste, and their disposal and utilization processes have been strictly controlled. Thus, an effective and low-cost technique was developed to treat and utilize these spent SCR catalysts by the vanadium–titanium magnetite sintering process. Effects of adding spent SCR catalysts on the sintering production process and product quality indexes of sinter were studied. The results showed that adding spent SCR catalysts can improve the sintering granulation and green feed permeability, thereby increasing the productivity and flame front speed. When the addition proportion of spent SCR catalysts is less than 1 wt.%, the performance indexes of the finished sinter are basically equal to those of the finished sinter without adding spent SCR catalysts. Further increasing the proportion of spent SCR catalysts to 2.0 wt.% results in a decrease in product quality indexes, which could be attributed to the increase in perovskite content in the finished sinter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.J. Wong, X.H. Fan, M. Gan, Z.Y. Ji, H.D. Ye, Z.A. Zhou, Z.C. Wang, J. Clean. Prod. 263 (2020) 121400.

    Article  Google Scholar 

  2. Y. Min, C.D. Qin, P.Y. Shi, C.J. Liu, Y.T. Feng, B.C. Liu, ISIJ Int. 57 (2017) 1955–1961.

    Article  Google Scholar 

  3. I.H. Choi, H.R. Kim, G. Moon, R.K. Jyothi, J.Y. Lee, Hydrometallurgy 175 (2018) 292–299.

    Article  Google Scholar 

  4. W.C. Yu, X.D. Wu, Z.C. Si, D. Weng, Appl. Surf. Sci. 283 (2013) 209–214.

    Article  Google Scholar 

  5. M. Kong, Q.C. Liu, X.Q. Wang, S. Ren, J. Yang, D. Zhao, W.C. Xi, L. Yao, Catal. Commun. 72 (2015) 121–126.

    Article  Google Scholar 

  6. Q. Wan, L. Duan, J.H. Li, L. Chen, K.B. He, J.M. Hao, Catal. Today 175 (2011) 189–195.

    Article  Google Scholar 

  7. L.X. Qian, L. Ding, H.M. Long, Y.L. Hu, Z.W. Yu, C.B. Xu, Ironmak. Steelmak. 48 (2021) 527–533.

    Article  Google Scholar 

  8. S. Singh, M.A. Nahil, X. Sun, C.F. Wu, J.H. Chen, B.X. Shen, P.T. Williams, Fuel 105 (2013) 585–594.

    Article  Google Scholar 

  9. Y.T. Huo, Z.D. Chang, W.J. Li, S.X. Liu, B. Dong, Waste Biomass Valor. 6 (2015) 159–165.

    Article  Google Scholar 

  10. Z.H. Su, S. Ren, T.S. Zhang, J. Yang, Y.H. Zhou, L. Yao, J. Iron Steel Res. Int. 28 (2021) 133–139.

    Article  Google Scholar 

  11. S. Li, H.Y. Gong, H.Y. Hu, H.M. Liu, Y.D. Huang, B. Fu, L.L. Wang, H. Yao, Chemosphere 254 (2020) 126700.

    Article  Google Scholar 

  12. C. Wang, C.M. Li, Y.J. Li, L. Huangfu, Z.E. Liu, S.Q. Gao, J. Yu, Ind. Eng. Chem. Res. 58 (2019) 19847–19854.

    Article  Google Scholar 

  13. S. Majed Al-Salem, A. Constantinou, G.A. Leeke, S. Hafeez, T. Safdar, H.J. Karam, M. Al-Qassimi, A.T. Al-Dhafeeri, G. Manos, U. Arena, Waste Manage. Res. 37 (2019) 1127–1141.

    Article  Google Scholar 

  14. R. Khodayari, C.U.I. Odenbrand, Appl. Catal. B Environ. 33 (2001) 277–291.

    Article  Google Scholar 

  15. M. Li, B. Liu, X.R. Wang, X.B. Yu, S.L. Zheng, H. Du, D. Dreisinger, Y. Zhang, Chem. Eng. J. 342 (2018) 1–8.

    Article  Google Scholar 

  16. L.J. Liu, L.L. Wang, S. Su, T. Yang, Z.J. Dai, M.X. Qing, K. Xu, S. Hu, Y. Wang, J. Xiang, Fuel 243 (2019) 406–412.

    Article  Google Scholar 

  17. Y.D. Xue, Y. Zhang, Y. Zhang, S.L. Zheng, Y. Zhang, W. Jin, Chem. Eng. J. 325 (2017) 544–553.

    Article  Google Scholar 

  18. X.S. Shang, G.R. Hu, C. He, J.P. Zhao, F.W. Zhang, Y. Xu, Y.F. Zhang, J.R. Li, J.S. Chen, J. Ind. Eng. Chem. 18 (2012) 513–519.

    Article  Google Scholar 

  19. H.Q. Wang, X.B. Chen, S. Gao, Z.B. Wu, Y. Liu, X.L. Weng, Catal. Sci. Technol. 3 (2013) 715–722.

    Article  Google Scholar 

  20. I.H. Choi, G. Moon, J.Y. Lee, R.K. Jyothi, Sci. Rep. 9 (2019) 12316.

    Article  Google Scholar 

  21. Z.P. Zhao, M. Guo, M. Zhang, J. Hazard. Mater. 286 (2015) 402–409.

    Article  Google Scholar 

  22. H. Zhou, P.N. Ma, Y.H. Zuo, J.K. Wang, L.Q. Lv, H.X. Meng, K.F. Cen, Asia-Pacific Journal of Chemical Engineering 15 (2020) e2428.

    Article  Google Scholar 

  23. X.F. Luo, H. Dong, S. Zhang, Y.W. Liu, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (2018) 1998–2008.

    Article  Google Scholar 

  24. Q.Q. Ren, S.J. Hao, W.F. Jiang, Y.Z. Zhang, W.P. Zhang, Appl. Mech. Mater. 488–489 (2014) 141–144.

    Article  Google Scholar 

  25. J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, X.X. Xue, Int. J. Miner. Metall. Mater. 25 (2018) 515–526.

    Article  Google Scholar 

  26. P. Besta, A. Samolejová, K. Janovská, R. Lenort, J. Haverland, Metalurgija 51 (2012) 325–328.

    Google Scholar 

  27. W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, Z.W. Ying, Metall. Mater. Trans. B 50 (2019) 1878–1895.

    Article  Google Scholar 

  28. S.L. Wu, Z.G. Que, K.L. Li, J. Iron Steel Res. Int. 25 (2018) 1017–1025.

    Article  Google Scholar 

  29. M. Zhou, T. Jiang, S.T. Yang, X.X. Xue, Int. J. Miner. Process. 142 (2015) 125–133.

    Article  Google Scholar 

  30. L.X. Qian, Y.D. Zhang, H.M. Long, Q.M. Meng, N. Li, Ironmak. Steelmak. 47 (2020) 973–979.

    Article  Google Scholar 

  31. A.M. Nyembwe, R.D. Cromarty, A.M. Garbers-Craig, Miner. Process. Extr. Metall. 125 (2016) 178–186.

    Article  Google Scholar 

  32. T. Umadevi, A.V. Deodar, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 80 (2009) 686–692.

    Google Scholar 

  33. S.P.E. Forsmo, P.O. Samskog, B.M.T. Björkman, Powder Technol. 181 (2008) 321–330.

    Article  Google Scholar 

  34. M. Zhou, S. Yang, T. Jiang, X. Xue, JOM 67 (2015) 1203–1213.

    Article  Google Scholar 

  35. Z.W. Yu, G.H. Li, C. Liu, F. Zhou, Z.W. Peng, T. Jiang, Int. J. Miner. Metall. Mater. 23 (2016) 389–398.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52174290 and 51704009) and the University Synergy Innovation Program of Anhui Province (GXXT-2020-072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-xin Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Hm., Zhang, Yd., Yang, T. et al. A promising method to recover spent V2O5–WO3/TiO2 catalyst: treatment by vanadium–titanium magnetite sintering process. J. Iron Steel Res. Int. 29, 1176–1184 (2022). https://doi.org/10.1007/s42243-021-00676-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00676-1

Keywords

Navigation