Skip to main content
Log in

Comparison on wear resistance of nanostructured bainitic bearing steel with and without residual cementite

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The sliding wear property of high-carbon nanostructured bainitic bearing steel with the equal initial hardness and different microstructures was investigated, and the reasons for the difference of wear resistance between the cementite-bearing (CB) and cementite-free (CF) specimens were analyzed. The results show that CF specimens have lower mass loss and surface roughness and shallower wear depth than CB specimens during wear process. Compared with CB specimen, CF specimen presents superior wear resistance. This is due to two reasons: (1) a lot of retained austenite in CF specimen is easy to produce TRIP effect and be transformed into martensite during wear process, which notably increased the surface hardness of worn specimen; (2) there is a nondestructive oxide layer in the surface of cementite-free worn specimen, which can protect the surface of worn specimen from destruction. Under the combined effect of retained austenite and oxide layer, the loss of matrix is reduced. Thus, CF specimen exhibits high wear resistance. It reveals that the wear mechanism of high-carbon nanostructured bainitic bearing steel with different microstructures can provide a reference for improving the wear resistance in high-carbon nanostructured bainitic bearing steel in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.C. Zhang, Z.N. Yang, J. Kang, J. Yanshan Univ. 37 (2013) 1–7.

    Google Scholar 

  2. F.C. Zhang, Z.N. Yang, J.Z. Lei, B.T. Pang, M.L. Wang, Bearing (2017) No. 1, 54–64.

    Google Scholar 

  3. Y.D. Chen, R.M. Ren, X.J. Zhao, C.H. Chen, R. Pan, Wear 448–449 (2020) 203217.

    Article  Google Scholar 

  4. F.C. Zhang, Z.N. Yang, Engineering 5 (2019) 319–328.

    Article  Google Scholar 

  5. S. Sharma, S. Sangal, K. Mondal, Metall. Mater. Trans. A 45 (2014) 5451–5468.

    Article  Google Scholar 

  6. J.J. Cui, L.Q. Chen, Metall. Mater. Trans. A 46 (2015) 3627–3634.

    Article  Google Scholar 

  7. H.J. Liu, J.J. Sun, T. Jiang, S.W. Guo, Y.N. Liu, Scripta Mater. 90–91 (2014) 17–20.

    Article  Google Scholar 

  8. Y.B. Huang, Q. Zhang, Y.B. Wen, Z. Song, M.X. Zhou, G. Xu, J. Iron Steel Res. 30 (2019) 735–740.

    Google Scholar 

  9. F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.

    Article  Google Scholar 

  10. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18 (2002) 279–284.

    Article  Google Scholar 

  11. A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, R. Elvira, Wear 298–299 (2013) 42–47.

    Article  Google Scholar 

  12. R. Rementeria, L. Morales-Rivas, M. Kuntz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, F.G. Caballero, Mater. Sci. Eng. A 630 (2015) 71–77.

    Article  Google Scholar 

  13. S.D. Bakshi, A. Leiro, B. Prakash, H.K.D.H. Bhadeshia, Wear 316 (2014) 70–78.

    Article  Google Scholar 

  14. T.S. Wang, J. Yang, C.J. Shang, X.Y. Li, B. Lv, M. Zhang, F.C. Zhang, Surf. Coat. Technol. 202 (2008) 4036–4040.

    Article  Google Scholar 

  15. A. Leiro, A. Kankanala, E. Vuorinen, B. Prakash, Wear 273 (2011) 2–8.

    Article  Google Scholar 

  16. M. Koyama, Z. Zhang, M.M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Science 355 (2017) 1055–1057.

    Article  Google Scholar 

  17. Y.H. Wang, Z.N. Yang, F.C. Zhang, Y.M. Qin, X.B. Wang, B. Lv, Mater. Sci. Eng. A 777 (2020) 139086.

    Article  Google Scholar 

  18. L.J. Xu, W.L. Song, S.Q. Ma, Y.C Zhou, K.M. Pan, S.Z. Wei, Tribol. Int. 154 (2021) 106719.

  19. J. Chakraborty, D. Bhattacharjee, I. Manna, Scripta Mater. 61 (2009) 604–607.

    Article  Google Scholar 

  20. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268–435.

    Article  Google Scholar 

  21. Z.C. Zhu, Y.T. Yang, Heat Treatment Technology and Equipment 39 (2018) No. 6, 70–76.

    Google Scholar 

  22. Y.Z. Liu, W.G. Hou, Y.L. Wang, Z.K. Chao, Bearing (2020) No. 1, 55–63.

    Google Scholar 

  23. C.H. Liu, G.D. Sun, L. Xiong, X.Q. Yang, J. Iron Steel Res. 30 (2018) 199–205.

    Google Scholar 

  24. J. Chakraborty, D. Bhattacharjee, I. Manna, Scripta Mater. 59 (2008) 247–250.

    Article  Google Scholar 

  25. Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen, R.D.K. Misra, Mater. Sci. Eng. A 718 (2018) 267–276.

    Article  Google Scholar 

  26. H.K.D.H. Bhadeshia, Proc. R. Soc. Lond. A 466 (2010) 3–18.

  27. J. Yang, T.S. Wang, B. Zhang, J. Yanshan Univ. 35 (2011) 427–430+470.

    Google Scholar 

  28. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, D.K. Matlock, Scripta Mater. 50 (2004) 1445–1449.

    Article  Google Scholar 

  29. L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11 (1995) 874–882.

    Article  Google Scholar 

  30. Y.M. Qin, X.M. Li, B. Lv, X.Y. Long, Z.N. Yang, F.C. Zhang, Y.G. Li, L.L You, Mater. Sci. Eng. A 797 (2020) 140220.

  31. Z.N. Yang, C.H. Chu, F. Jiang, Y.M. Qin, X.Y. Long, S.L. Shu, D. Chen, F.C. Zhang, Mater. Sci. Eng. A 748 (2019) 16–20.

    Article  Google Scholar 

  32. M.X. Zhang, Z.Q. Guo, M.K. Kang, Phys. Exam. Test. (1992) No. 3, 33–38.

  33. Y.X. Lao, H. Du, T.Y. Xiong, Y. Wang, J. Mater. Sci. Technol. 33 (2017) 330–337.

    Article  Google Scholar 

  34. J.L. Zhao, Z.N. Yang, F.C. Zhang, J. Yanshan Univ. 39 (2015) 199–205.

    Google Scholar 

  35. B.G. Liu, W. Li, X.W. Lu, X.S. Jia, X.J. Jin, Wear 428 (2019) 127–136.

    Article  Google Scholar 

  36. P.V. Moghaddama, J. Hardell, E. Vuorinen, B. Prakash, Wear 428 (2019) 193–204.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key R&D Program of China (2017YFB0304501), the National Natural Science Foundation of China (Nos. 51831008, 51871192 and 52001275), the Natural Science Foundation of Hebei Province (E2020203058, E2018203271), and the Innovation Funding Project for Postgraduate of Hebei Province (CXZZBS2020058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-guo Li or Zhi-nan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Ym., Liu, Cb., Zhang, Cs. et al. Comparison on wear resistance of nanostructured bainitic bearing steel with and without residual cementite. J. Iron Steel Res. Int. 29, 339–349 (2022). https://doi.org/10.1007/s42243-021-00672-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00672-5

Keywords

Navigation