Skip to main content
Log in

Effects of final rolling temperature and coiling temperature on precipitates and microstructure of high-strength low-alloy pipeline steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The strength-to-weight ratio is an important property of high-strength low-alloy (HSLA) steel in pipeline, whose precipitation strengthening can be improved. The final rolling temperature (FRT) and coiling temperature (CT) are the key process parameters in the control of precipitates and microstructure. Continuous cooling rate was fixed at 10 °C/s, and the effects of deformation and coiling temperatures on precipitates and microstructure of Ti–Nb microalloyed HSLA steel were investigated through thermo-mechanical controlled processing on Gleeble 3500. The microstructure is mainly acicular ferrite with high density dislocation and several microns scale. The size and volume fraction of the precipitates were studied under transmission electron microscopy. The results showed that the diameter of the precipitates was in the range between 4 and 240 nm. The optimized combination of parameters is FRT of 820 °C and CT of 550 °C, and the volume fraction of precipitates obtained under this process is 0.59%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. García-Sesma, B. López, B. Pereda, Mater. Sci. Eng. A 748 (2019) 386–395.

    Article  Google Scholar 

  2. B.S. Koo, C.W. Lee, Y.H. Lim, J. Constr. Steel Res. 170 (2020) 106–112.

    Article  Google Scholar 

  3. V.V. Natarajan, V.S.A. Challa, R.D.K. Misra, D.M. Sidorenko, M.D. Mulholland, M. Manohar, J.E. Hartmann, Mater. Sci. Eng. A 665 (2016) 1–9.

    Article  Google Scholar 

  4. J.W. Lei, K.M. Wu, Y. Li, T.P. Hou, X. Xie, R.D.K. Misra, J. Iron Steel Res. Int. 26 (2019) 1117–1125.

    Article  Google Scholar 

  5. X. Yan, Y. Xia, H. Blum, T. Gernay, J. Constr. Steel Res. 174 (2020) 106–299.

    Google Scholar 

  6. X.D. Huo, K. He, J.N. Xia, L.J. Li, S.J. Chen, J. Iron Steel Res. Int. 28 (2021) 335–345.

    Article  Google Scholar 

  7. Y.W. Kim, S.G. Hong, Y.H. Huh, C.S. Lee, Mater. Sci. Eng. A 615 (2014) 255–261.

    Article  Google Scholar 

  8. P. Gong, X.G. Liu, A. Rijkenberg, W.M. Rainforth, Acta Mater. 161 (2018) 374–387.

    Article  Google Scholar 

  9. F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 620 (2015) 22–29.

    Article  Google Scholar 

  10. C.Y. Chen, C.F. Chen, C.C. Chen, Y.J. Ren, Mater. Sci. Eng. A 634 (2015) 123–133.

    Article  Google Scholar 

  11. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Acta Mater. 61 (2013) 2521–2530.

    Article  Google Scholar 

  12. A. Fatehi, J. Calvo, A.M. Elwazri, S. Yue, Mater. Sci. Eng. A 527 (2010) 4233–4240.

    Article  Google Scholar 

  13. J.Z. Xue, Z.Z. Zhao, D. Tang, H. Li, H.H. Wu, W.L. Xiong, L. Liang, Y. Huang, J. Iron Steel Res. Int. 28 (2021) 346–359.

    Article  Google Scholar 

  14. Z.W. Peng, L.J. Li, S.J. Chen, X.D. Huo, J.X. Gao, Mater. Des. 108 (2016) 289–297.

    Article  Google Scholar 

  15. F. Zhao, B. Jiang, J. Xie, Y. Liu, Mater. Lett. 236 (2019) 440–443.

    Article  Google Scholar 

  16. H.L. Wei, G.Q. Liu, X. Xiao, H.T. Zhao, H. Ding, R.M. Kang, Mater. Sci. Eng. A 564 (2013) 140–146.

    Article  Google Scholar 

  17. H.L. Wei, G.Q. Liu, H.T. Zhao, M.H. Zhang, Mater. Sci. Eng. A 596 (2014) 112–120.

    Article  Google Scholar 

  18. A.P. Coldren, J.L. Mihelich, Met. Sci. Heat Treat. 19 (1977) 559–572.

    Article  Google Scholar 

  19. M.C. Zhao, K. Yang, Y.Y. Shan, Mater. Sci. Eng. A 335 (2002) 14–20.

    Article  Google Scholar 

  20. Y.M. Kim, H. Lee, N.J. Kim, Mater. Sci. Eng. A 478 (2008) 361–370.

    Article  Google Scholar 

  21. X.P. Mao, Microalloying technology on thin slab casting and direct rolling process, Metallurgical Industry Press, Beijing, China, 2008.

    Google Scholar 

  22. Q.L. Yong, Secondary phases in steels, Metallurgy Industry Press, Beijing, China, 2006.

    Google Scholar 

  23. X.G. Zhou, Z.Y. Liu, X.Q. Yuan, D. Wu, G.D. Wang, X.H. Liu, J. Iron Steel Res. Int. 15 (2008) No. 3, 65–69.

    Article  Google Scholar 

  24. X. Ma, C. Miao, B. Langelier, S. Subramanian, Mater. Des. 132 (2017) 244–249.

    Article  Google Scholar 

  25. Y. Funakawa, T. Shiozaki, K. Tomita, ISIJ Int. 44 (2004) 1945–1951.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Science and Technology Innovation Cooperation Project between China and South Africa (2017YFE0113400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-hua Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yd., Tang, Zh., Xiao, Sf. et al. Effects of final rolling temperature and coiling temperature on precipitates and microstructure of high-strength low-alloy pipeline steel. J. Iron Steel Res. Int. 29, 1236–1244 (2022). https://doi.org/10.1007/s42243-021-00659-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00659-2

Keywords

Navigation