Skip to main content
Log in

High-temperature modification and air-quenching granulation of steel slag

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To solve the problem of difficult utilization of steel slag, the liquid steel slag was modified and the air-quenching granulation process was carried out to make steel slag into a value-added end product: air-quenching granulated steel slag. The granulated slag was tested to analyze the variation rule of slag properties under different modification conditions. Based on the phase diagram of CaO–Si2O–FeO–MgO–Al2O3 slag system, the feasibility of blast furnace (BF) slag as modifier was determined. When the addition of BF slag was increased from 0% to 35%, following results were obtained. The slag fluidity was improved, and the air-quenching temperature range was expanded. Then, the yield of air-quenched steel slag increased, while the granulation rate, the degree of sphericity, the compactness were decreased. Furthermore, the air-quenching granulation process could substantially improve the stability and the amorphous content of steel slag. The maximum removal rate of free CaO was above 80% and the amorphous content was up to 95%. Taking the factors of yield and properties of granulated steel slag into full consideration, the optimum proportion of BF slag is around 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Jiang, T.C. Ling, C.J. Shi, S.Y. Pan, Resour. Conserv. Recy. 136 (2018) 187–197.

    Article  Google Scholar 

  2. H.B. Dong, Y. Liu, L.J. Wang, X.C. Li, Z.L. Tian, Y.X. Huang, C. McDonald, Ironmak. Steelmak. 46 (2019) 922–927.

    Article  Google Scholar 

  3. J.L. Guo, Y.P. Bao, M. Wang, Waste Manage. 78 (2018) 318–330.

    Article  Google Scholar 

  4. L.V. Fisher, A.R. Barron, Resour. Conserv. Recy. 146 (2019) 244–255.

    Article  Google Scholar 

  5. Y. Zhang, J. Zhang, T.Y. Zhang, Y.M. Liu, Z.B. Han, China Metallurgy 24 (2014) No. 8, 33–37.

    Google Scholar 

  6. J. Zhang, D.L. Yan, Y.H. Qi, P.F. Shen, H.J. Xu, J.J. Gao, Iron and Steel 55 (2020) No. 1, 1–5.

    Google Scholar 

  7. Y. Kang, C. Liu, Y.Z. Zhang, H.W. Xing, Crystals 10 (2020) 30.

    Article  Google Scholar 

  8. L.L. Wang, Y.Z. Zhang, Y. Long, H.B. Ke, Appl. Therm. Eng. 181 (2020) 115850.

    Article  Google Scholar 

  9. Y. Kang, C. Liu, Y.Z. Zhang, H.W. Xing, M.F. Jiang, J. Non-Cryst. Solids 500 (2018) 453–459.

    Google Scholar 

  10. H. Wang, W. Zhang, C. Wang, T.L. Tian, H.W. Xing, Y.Z. Zhang, Ironmak. Steelmak. 47 (2020) 432–436.

    Article  Google Scholar 

  11. H.G. Wang, B. Peng, C.S. Yue, L. Wu, G.B. Qiu, Z.T. Bai, M. Zhang, M. Guo, Environ. Eng. 38 (2020) No. 5, 133–137.

    Google Scholar 

  12. X. Yin, C.M. Zhang, G.C. Wang, Y.H. Cai, C.M. Zhao, Metall. Res. Technol. 115 (2018) 414.

    Article  Google Scholar 

  13. Y.X. Jiang, Iron and Steel 46 (2011) No. 5, 89–92.

    Google Scholar 

  14. J.J. Pei, J.H. Wu, W.Q. Huo, Y.Z. Zhang, H.W. Xing, Q.Q. Ren, J. Iron Steel Res. Int. 28 (2021) 383–390.

    Article  Google Scholar 

  15. J.M. Kim, S.H. Cho, E.G. Kwak, KSCE J. Civ. Eng. 19 (2015) 1548.

  16. T.S. Naidu, G.M. Sheridan, L.D. van Dyk, Miner. Eng. 149 (2020) 106234.

    Article  Google Scholar 

  17. M. Barati, S. Jahanshahi, J. Sustain. Metall. 6 (2020) 191–206.

    Article  Google Scholar 

  18. L.B. Deng, S. Wang, Z. Zhang, Z.H. Li, R.D. Jia, F. Yun, H. Li, Y.H. Ma, W.C. Wang, Mater. Chem. Phy. 251 (2020) 123159.

    Article  Google Scholar 

  19. C.W. Liu, S.G. Huang, B. Blanpain, M.X. Guo, Metall. Mater. Trans. B 50 (2019) 271–281.

    Article  Google Scholar 

  20. R.D. Jia, L.B. Deng, F. Yun, H. Li, X.F. Zhang, X.L. Jia, Mater. Chem. Phys. 233 (2019) 155–162.

  21. S.Y. Liu, Z.J. Wang, B. Peng, C.S. Yue, M. Guo, M. Zhang, Chin. J. Eng. 40 (2018) 557–564.

    Google Scholar 

  22. X.D. Xing, Z.G. Pang, C. Mo, S. Wang, J.T. Ju, J. Non-Cryst. Solids 530 (2020) 119801.

    Google Scholar 

  23. W.W. She, Z.J. Liu, X.M. Chen, J.L. Yang, China Metall. 29 (2019) No. 7, 13–16.

    Google Scholar 

  24. J. Li, W.X. Liu, Y.Z. Zhang, A.M. Yang, K. Zhao, Mater. Manuf. Process. 30 (2015) 374–380.

    Article  Google Scholar 

  25. X. Yin, C.M. Zhang, G.C. Wang, J. Yang, Y.H. Cai, C.M. Zhao, Ironmak. Steelmak. 45 (2018) 969–977.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Program of Hebei Province (Grant Number 19273806D) and the Project of Hebei Provincial Department of Education (Grant Number JQN2020042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Hong-wei Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, C., Xing, Hw. et al. High-temperature modification and air-quenching granulation of steel slag. J. Iron Steel Res. Int. 29, 783–792 (2022). https://doi.org/10.1007/s42243-021-00641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00641-y

Keywords

Navigation