Skip to main content
Log in

Non-uniform shrinkage analysis of round billet using element-free Galerkin method

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

An element-free Galerkin thermal–mechanical calculation model for the solidification and shrinkage of round billet was established. The non-uniform heat flux measured in the plant trial was used as the boundary condition to simulate and analyze the deformation of solidified shell. The results indicate that the maximum and minimum shrinkages of the round billet at mold outlet are 0.78 and 0.21 mm, respectively, with apparent non-uniform characteristic. The local high-heat-flux region substantially dominates the non-uniformity of shell shrinkage, and the larger shrinkage usually derives from the high heat flux between the solidified shell and the mold in the circumferential direction. Also, the shrinkage on the shell surface has an immediate connection with the equivalent stress. Specifically, the shrinkage is more closely related to the radial stress component than the circumferential stress component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.G. Thomas, C. Ojeda, in: 2003 ISSTech. Steelmaking Conference, Ideal Taper Prediction for Slab Casting, Indianapolis, USA, 2003, pp. 295–308.

  2. T. Wang, J. Li, Z. Chen, L. Wu, Z. Cao, T. Li, Ironmak. Steelmak. 40 (2013) 25–31.

  3. Z.Z. Cai, M.Y. Zhu. Int. J. Miner. Metall. Mater. 21 (2014) 240–250.

  4. Z.Z. Cai, M.Y. Zhu, Ironmak. Steelmak. 41 (2014) 435–446.

  5. F. Du, X. Wang, G. Yu, Z. Yan, X. Zhu, J. Xu, M. Yao, Ironmak. Steelmak. 45 (2017) 420–425.

  6. L.G. Zhu, R.V. Kumar, Ironmak. Steelmak. 34 (2007) 76–82.

  7. J.C. Álvarez Hostos, A.D. Bencomo, E.S. Puchi Cabrera, I.M. Figueroa Poleo, Int. J. Cast. Metal. Res. 31 (2017) 47–55.

  8. G.R. Liu, Y.T. Gu, An introduction to meshfree methods and their programming, Springer, Dordrecht, Netherlands, 2005.

  9. L.Q. Cai, X.D. Wang, M. Yao, Y. Liu, Metall. Mater. Trans. B 51 (2020) 1113–1126.

  10. J.C. Álvarez Hostos, E.S. Puchi Cabrera, A.D. Bencomo, Steel Res. Int. 86 (2015) 1403–1418.

  11. H.T. Yang, Y.Q. He, Int. Commun. Heat Mass Transfer 37 (2010) 385–392.

  12. J.C. Álvarez Hostos, E.A. Gutierrez Zambrano, J.C. Salazar Bove, E.S. Puchi Cabrera, A.D. Bencomo, Int. Commun. Heat Mass Transfer 108 (2019) 104321.

  13. J.C. Álvarez Hostos, A.D. Bencomo, E.S. Puchi Cabrera, Can. Metall. Quart. 56 (2017) 156–167.

  14. J.C. Álvarez Hostos, A.D. Bencomo, E.S. Puchi Cabrera, V.D. Fachinotti, B. Tourn, J.C. Salazar Bove, Eng. Anal. Bound. Elem. 106 (2019) 170–181.

  15. J.C. Álvarez Hostos, E.S. Puchi Cabrera, A.D. Bencomo, Steel Res. Int. 88 (2017) 1600019.

  16. J.C. Álvarez Hostos, A.D. Bencomo, E.S. Puchi Cabrera, J. Therm. Stresses 41 (2018) 160–181.

  17. L.Q. Cai, X.D. Wang, J.J. Wei, M. Yao, Y. Liu, Metall. Mater. Trans. B 52 (2021) 804–814.

  18. T. Belytschko, Y.Y. Lu, L. Gu, Int. J. Numer. Methods Eng. 37 (1994) 229–256.

  19. L. Zhang, H.F. Shen, Y.M. Rong, T.Y. Huang, Mater. Sci. Eng. A 466 (2007) 71–78.

  20. R. Vaghefi, A. Nayebi, M.R. Hematiyan, Acta Mech. 229 (2018) 4375–4392.

  21. F.X. Sun, J.F. Wang, Y.M. Cheng, Int. J. Appl. Mech. 8 (2016) 1650096.

  22. T. Belytschko, Y.Y. Lu, L. Gu, Eng. Fract. Mech. 51 (1995) 295–315.

  23. L.Q. Cai, X.D. Wang, N. Wang, M. Yao, Metall. Mater. Trans. B 51 (2020) 236–246.

  24. G.R. Liu, Mesh free methods moving beyond the finite element method, CRC Press, Boca Raton, Florida, USA, 2002.

  25. H.B. Yin, M. Yao, H.Y. Zhan, D.C. Fang, ISIJ Int. 46 (2006) 546–552.

  26. Y.M. Won, T.J. Yeo, K.H. Oh, J. Park, J. Choi, C.H. Yim, ISIJ Int. 38 (1998) 53–62.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51974056, 51474047 and 51704073). The Fundamental Research Funds for the Central Universities and the Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province) are also gratefully acknowledged. Part of this work is performed using computational resources from Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Lq., Wang, Xd. & Yao, M. Non-uniform shrinkage analysis of round billet using element-free Galerkin method. J. Iron Steel Res. Int. 29, 80–87 (2022). https://doi.org/10.1007/s42243-021-00638-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00638-7

Keywords

Navigation