Skip to main content
Log in

Flow fields control for bubble refinement induced by electromagnetic fields

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Large bubbles seriously reduce the efficiencies of the interactions between the bubbles and the molten steel, such as energy transfer, momentum transfer, mass transfer and chemical reaction. To reduce the size of the bubbles and increase the gas–liquid interface area, a novel non-intrusive method of bubble refinement was proposed, which only depends on the molten steel flow field controlled by the rotating electromagnetic field. The flow fields of the molten steel for bubble refinement were analyzed, and the corresponding bubble refinement was investigated. It was found that the molten steel formed obvious rotating turbulent flow for bubble refinement under the unidirectional rotating electromagnetic field. However, the large vortex in the center of the molten pool caused by the rotating flow made the bubbles aggregate and coalesce again, resulting in formation of larger bubbles and gas cavity. To suppress the central vortex formation and enhance the bubble refinement, the forward-reverse rotating electromagnetic field for bubble refinement was proposed. The irregular and chaotic flow occurred repeatedly because of alternating forward and reverse rotating in a short period, so that the turbulent kinetic energy and turbulent dissipation of the flow field always remained at a high level which favors bubble refinement. As a result, the bubble diameter can decrease by more than 50% compared to that without electromagnetic field. Furthermore, it is important that this non-intrusive kind of bubble refinement method completely avoids the introduction of non-metallic inclusions caused by intrusive configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.M. Su, Z.H. Dou, T.A. Zhang, Y. Liu, ISIJ Int. 60 (2020) 915–921.

    Article  Google Scholar 

  2. A. Kumar, Z.E. Chacko, M. Malathi, K.M. Godiwalla, S.K. Ajmani, S. Ranganathan, Steel Res. Int. 85 (2013) 927–934.

    Article  Google Scholar 

  3. S. Li, X.L. Wei, L.X. Yu, Fuel 90 (2011) 1350–1360.

    Article  Google Scholar 

  4. W.F. Li, R. Zhu, K. Dong, J. Zhang, C. Feng, B.C. Han, X.T. Wu, Metall. Mater. Trans. B 51 (2020) 1060–1069.

    Article  Google Scholar 

  5. M.Y. Zhu, W.T. Lou, W.L. Wang, Acta Metall. Sin. 54 (2018) 131–150.

    Google Scholar 

  6. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, J.C. He, Metall. Mater. Trans. B 46 (2015) 1484–1493.

    Article  Google Scholar 

  7. G. Holzinger, M. Thumfart, Steel Res. Int. 90 (2019) 1800642.

    Article  Google Scholar 

  8. L. Zhao, Y. Pan, H.C. Liao, Q.G. Wang, Mater. Lett. 66 (2012) 328–331.

    Article  Google Scholar 

  9. L. Li, D.C. Wu, G.Y. Liang, Z.B. Sun, Y.L. Guo, J. Alloy. Compd. 474 (2009) 378–381.

    Article  Google Scholar 

  10. S.N. Sahu, A.A. Gokhale, A. Mehra, Adv. Eng. Mater. 19 (2017) 1600745.

    Article  Google Scholar 

  11. T. Fabritius, J. Riipi, M. Järvinen, O. Mattila, E.P. Heikkinen, A. Kärnä, J. Kurikkala, P. Sulasalmi, J. Härkki, ISIJ Int. 50 (2010) 797–803.

    Article  Google Scholar 

  12. N.D. Petsev, L.G. Leal, M.S. Shell, Phys. Rev. Lett. 125 (2020) 146101.

  13. J. Wannasin, R.A. Martinez, M.C. Flemings, Scripta Mater. 55 (2006) 115–118.

    Article  Google Scholar 

  14. L.H. Wang, H.G. Lee, P. Hayes, ISIJ Int. 36 (1996) 7–16.

    Article  Google Scholar 

  15. Y. Liu, M. Sano, T.A. Zhang, Q. Wang, J.C. He, ISIJ Int. 49 (2009) 17–23.

    Article  Google Scholar 

  16. J.Y. Wang, L.G. Wang, J. Hanotu, W.B. Zimmerman, Fuel Process. Technol. 165 (2017) 131–137.

    Article  Google Scholar 

  17. M.C. Díaz, S.V. Komarov, M. Sano, ISIJ Int. 37 (1997) 1–8.

    Article  Google Scholar 

  18. F. García-Moreno, B. Siegel, K. Heim, A.J. Meagher, J. Banhart, Colloid. Surf. A Physicochem. Eng. Asp. 473 (2015) 60–67.

    Article  Google Scholar 

  19. B. O. Hasan, Int. J. Multiph. Flow 97 (2017) 94–108.

    Article  Google Scholar 

  20. T. Yamamoto, Y. Fang, S.V. Komarov, Chem. Eng. Sci. 197 (2019) 26–36.

    Article  Google Scholar 

  21. M. Martín, F.J. Montes, M.A. Galán, Ind. Eng. Chem. Res. 47 (2008) 6251–6263.

    Article  Google Scholar 

  22. Y. Liu, Z.M. Zhang, S. Masamichi, J. Zhang, P. Shao, T.A. Zhang, J. Iron Steel Res. Int. 21 (2014) 135–143.

    Article  Google Scholar 

  23. E.R. Gómez, R. Zenit, C.G. Rivera, G. Ramírez-Argáez, M.A. Ramirez-Argaez, Metall. Mater. Trans. B 44 (2013) 423–435.

    Article  Google Scholar 

  24. N.Z. Wang, X. Chen, J.Y. Yuan, G.Q. Wang, Y.X. Li, H.W. Zhang, Y. Liu, Metall. Mater. Trans. B 47 (2016) 3362–3374.

    Article  Google Scholar 

  25. M. Laakkonen, P. Moilanen, J. Aittamaa, Chem. Eng. J. 106 (2005) 133–143.

    Article  Google Scholar 

  26. M. Laakkonen, P. Moilanen, T. Miettinen, K. Saari, M. Honkanen, P. Saarenrinne, J. Aittamaa, Chem. Eng. Res. Des. 83 (2005) 50–58.

    Article  Google Scholar 

  27. J.H. Ji, R.Q. Liang, J.C. He, ISIJ Int. 57 (2017) 453–462.

    Article  Google Scholar 

  28. Q. Wang, M. He, X.W. Zhu, X.L. Li, C.L. Wu, S.L. Dong, T. Liu, Acta Metall. Sin. 54 (2018) 228–246.

    Google Scholar 

  29. C.L. Wu, D.W. Li, X.W. Zhu, Q. Wang, T. Oleksandr, H. Lei, Acta Metall. Sin. 55 (2019) 875–884.

    Google Scholar 

  30. D.W. Li, Z.J. Su, K. Marukawa, J.C. He, J. Iron Steel Res. Int. 21 (2014) 159–165.

    Article  Google Scholar 

  31. D. Schurmann, B. Willers, G. Hackl, Y. Tang, S. Eckert, Metall. Mater. Trans. B 50 (2019) 716–731.

    Article  Google Scholar 

  32. Z. Yu, Z.Q. Zhang, Z.M. Ren, Z.S. Lei, K. Deng, Acta Metall. Sin. 46 (2010) 1275–1280.

    Article  Google Scholar 

  33. Y.X. Liao, D. Lucas, Chem. Eng. Sci. 64 (2009) 3389–3406.

    Article  Google Scholar 

  34. J. Vejražka, M. Zedníková, P. Stanovský, AIChE J. 64 (2018) 740–757.

    Article  Google Scholar 

  35. J. Solsvik, H.A. Jakobsen, Int. J. Chem. React. Eng. 13 (2015) 477–491.

    Article  Google Scholar 

  36. T.Y. Liu, Y. Sheng, L.H. Han, Q. Liu, J. Chem. Eng. Jpn. 50 (2017) 4–14.

    Article  Google Scholar 

  37. B. Willers, M. Barna, J. Reiter, S. Eckert, ISIJ Int. 57 (2017) 468–477.

    Article  Google Scholar 

  38. K. Mishra, Int. J. Numer. Methods Fluids 69 (2012) 897–908.

    Article  Google Scholar 

  39. Z. Jaworski, B. Zakrzewska, Chem. Eng. Res. Des. 80 (2002) 846–854.

    Article  Google Scholar 

  40. L. Schiller, A. Naumann, Z. Ver. Deutsch. Ing. 77 (1935) 318–320.

    Google Scholar 

  41. Z.Q. Liu, L.M. Li, F.S. Qi, B.K. Li, M.F. Jiang, F. Tsukihashi, Metall. Mater. Trans. B (2015) 406–420.

  42. S. Kumar, D. Ramkrishna, Chem. Eng. Sci. 51 (1996) 1311–1332.

    Article  Google Scholar 

  43. H. Luo, H.F. Svendsen, AIChE J. 42 (1996) 1225–1233.

    Article  Google Scholar 

  44. B.K. Li, F. Tsukihashi, ISIJ Int. 40 (2000) 1203–1209.

    Article  Google Scholar 

  45. C. Martínez-Bazán, J.L. Montañés, J.C. Lasheras, J. Fluid Mech. 401 (1999) 157–182.

    Article  Google Scholar 

  46. K. Wichterle, Steel Res. Int. 81 (2010) 356–361.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the National Natural Science Foundation of China (No. U1560207), the National Key R&D Program of China (No. 2017YFB0304402), the Fundamental Research Funds for the Central Universities (No. N2125018 and No. N180915002) and Liaoning Innovative Research Team in University (No. LT2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ly., Liu, Zy., He, M. et al. Flow fields control for bubble refinement induced by electromagnetic fields. J. Iron Steel Res. Int. 29, 575–587 (2022). https://doi.org/10.1007/s42243-021-00627-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00627-w

Keywords

Navigation