Skip to main content
Log in

Effect of nozzle type on fluid flow, solidification, and solute transport in mold with mold electromagnetic stirring

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The mathematical model of coupling fluid flow, heat transfer, solidification, solute transport, and the electromagnetic field of the bloom in the upper part of the strand was established with three nozzle types. Then, the flow field, distribution of the temperature, solidification, and macrosegregation of carbon were investigated and compared by numerical modeling. In the case of the straight submerged entry nozzle (SEN), the molten steel flows down deep into the liquid pool, and the depth of the jet flow reaches about 1.0 m beneath the meniscus. The jetting zone is the high-temperature zone. In the case of two-port SEN and four-port SEN, the flow patterns and distribution of temperature in the central longitudinal section are similar. The jet flow impinges directly on the initially solidified shell and then it is divided into two longitudinal circulations. The heat of molten steel is dissipated along with the longitudinal circulations. The negative segregation band was generated near the bloom surface due to the washing effect by the rotating flow at the solidification front with three nozzle types. The negative segregation deteriorates gradually with the number of ports decreasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Kholmatov, S. Takagi, L. Jonsson, P. Jönsson, S. Yokoya, ISIJ Int. 47 (2007) 80–87.

    Article  Google Scholar 

  2. Y. Wang, A. Dong, L. Zhang, Steel Res. Int. 82 (2011) 428–439.

    Article  Google Scholar 

  3. H. An, Y. Bao, M. Wang, L. Zhao, Metall. Res. Technol. 115 (2018) 103.

    Article  Google Scholar 

  4. H. Sun, J. Zhang, ISIJ Int. 51 (2011) 1657–1663.

    Article  Google Scholar 

  5. Q. Fang, H. Ni, H. Zhang, B. Wang, Z. Lv, Metals 7 (2017) 146.

    Article  Google Scholar 

  6. H. Sun, J. Zhang, Metall. Mater. Trans. B 45 (2014) 936–946.

    Article  Google Scholar 

  7. S. Wang, G.A. De Toledo, K. Välimaa, S. Louhenkilpi, ISIJ Int. 54 (2014) 2273–2282.

    Article  Google Scholar 

  8. I.C. Ramos, R.D. Morales, S. Garcia-Hernandez, A. Ceballos-Huerta, ISIJ Int. 54 (2014) 1797–1806.

    Article  Google Scholar 

  9. I. Calderón-Ramos, R.D. Morales, M. Salazar-Campoy, Steel Res. Int. 86 (2015) 1610–1621.

    Article  Google Scholar 

  10. I. Calderón-Ramos, R.D. Morales, Metall. Mater. Trans. B 46 (2015) 1314–1325.

    Article  Google Scholar 

  11. M.M. Salazar-Campoy, R.D. Morales, A. Nájera-Bastida, V. Cedillo-Hernández, J.C. Delgado-Pureco, Metall. Mater. Trans. B 48 (2017) 1376–1389.

    Article  Google Scholar 

  12. S. Yokoya, S. Takagi, M. Iguchi, Y. Asako, R. Westoff, S. Hara, ISIJ Int. 38 (1998) 827–833.

    Article  Google Scholar 

  13. S. Yokoya, P.G. Jönsson, K. Sasaki, K. Tada, S. Takagi, M. Iguchi, Scand. J. Metall. 33 (2004) 22–28.

    Article  Google Scholar 

  14. S. Yokoya, S. Takagi, M. Kaneko, M. Iguchi, K. Marukawa, S. Hara, ISIJ Int. 41 (2001) 1215–1220.

    Article  Google Scholar 

  15. S. Yokoya, S. Takagi, K. Tada, M. Iguchi, K. Marukawa, S. Hara, ISIJ Int. 41 (2001) 1201–1207.

    Article  Google Scholar 

  16. M.M. Aboutalebi, F. Lapointe, J. D’amours, M. Isac, R.I.L. Guthrie, Ironmak. Steelmak. 46 (2019) 819–826.

    Article  Google Scholar 

  17. H. Bai, P. Ni, M. Ersson, T. Zhang, P.G. Jönsson, Ironmak. Steelmak. 46 (2019) 911–920.

    Article  Google Scholar 

  18. Y. Wang, W. Chen, D. Jiang, L. Zhang, Steel Res. Int. 91 (2020) 1900470.

    Article  Google Scholar 

  19. H. Chen, M. Long, D. Chen, T. Liu, H. Duan, Int. J. Heat Mass Transfer 126 (2018) 843–853.

    Article  Google Scholar 

  20. Q. Dong, J. Zhang, Y. Yin, B. Wang, Metals 7 (2017) 209.

    Article  Google Scholar 

  21. K.Y.M. Lai, M. Salcudean, S. Tanaka, R.I.L. Guthrie, Metall. Trans. B 17 (1986) 449–459.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. U1860206, 51725402, 51874031 and 51904024), the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-20-04A), the High Steel Center (HSC) at Yanshan University, Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-feng Zhang or Wen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yd., Zhang, Lf., Yang, W. et al. Effect of nozzle type on fluid flow, solidification, and solute transport in mold with mold electromagnetic stirring. J. Iron Steel Res. Int. 29, 237–246 (2022). https://doi.org/10.1007/s42243-021-00577-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00577-3

Keywords

Navigation