Skip to main content
Log in

Effects of strain rate on austenite stability and mechanical properties in a 5Mn steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The austenite stability and the mechanical properties in a typical medium Mn grade steel, i.e., 5Mn steel, were investigated under a wide range of strain rates through the combination of experimental and theoretical methodologies. The obtained results indicate that austenite is more stable at a high strain rate, which is due to the suppression of the austenite to martensite transformation. This suppression is attributed to the increased stacking fault energy and the high deformation energy barrier. Moreover, the suppression of martensitic transformation also leads to the decrease in the ultimate tensile strength and the uniform elongation. Owing to the increase in an adiabatic heating temperature, an increase in the uniform elongation is acquired at a high strain rate. The obtained fundamental study results shed light on a wide application of the medium Mn steel under different strain rate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Hu, H. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457–1464.

    Google Scholar 

  2. S. Wang, W.J. Chen, Z.Z. Zhao, X.L. Zhao, X.Y. Luo, Q. Wang, J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00498-7.

    Article  Google Scholar 

  3. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, Mater. Sci. Eng. A 528 (2011) 6661–6666.

    Google Scholar 

  4. D.W. Suh, S.J. Kim, Scripta Mater. 126 (2017) 63–67.

    Google Scholar 

  5. Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, J.W. Yan, Mater. Des. 94 (2016) 424–432.

    Google Scholar 

  6. Z. Gronostajski, A. Niechajowicz, R. Kuziak, J. Krawczyk, S. Polak, J. Mater. Process. Technol. 242 (2017) 246–259.

    Google Scholar 

  7. V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, F. Hild, Int. J. Solids Struct. 45 (2007) 601–619.

    Google Scholar 

  8. H. Huh, S.B. Kim, J.H. Song, J.H. Lim, Int. J. Mech. Sci. 50 (2008) 918–931.

    Google Scholar 

  9. S. Xu, D. Ruan, J.H. Beynon, Y. Rong, Mater. Sci. Eng. A 573 (2013) 132–140.

    Google Scholar 

  10. D.Q. Zou, S.H. Li, J. He, Mater. Sci. Eng. A 680 (2016) 54–63.

    Google Scholar 

  11. R. Alturk, L.G. Hector Jr., C.M. Enloe, F. Abu-Farha, T.W. Brown, JOM 70 (2018) 894–905.

    Google Scholar 

  12. R. Rana, E. De Moor, J.G. Speer, D.K. Matlock, JOM 70 (2018) 706–713.

    Google Scholar 

  13. Y.G. Yang, Z.L. Mi, M. Xu, Q. Xiu, J. Li, H.T. Jiang, Mater. Sci. Eng. A 725 (2018) 389–397.

    Google Scholar 

  14. D. De Knijf, C. Föjer, L.A.I. Kestens, R. Petrov, Mater. Sci. Eng. A 638 (2015) 219–227.

    Google Scholar 

  15. R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, L.P. Karjalainen, Acta Mater. 84 (2015) 339–348.

    Google Scholar 

  16. M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe, Acta Mater. 79 (2014) 268–281.

    Google Scholar 

  17. V.S.A. Challa, R.D.K. Misra, M.C. Somani, Z.D. Wang, Mater. Sci. Eng. A 661 (2016) 51–60.

    Google Scholar 

  18. J. Min, L.G. Hector Jr., L. Zhang, J. Lin, J.E. Carsley, L. Sun, Mater. Sci. Eng. A 673 (2016) 423–429.

    Google Scholar 

  19. B. Sun, F. Fazeli, C. Scott, B. Guo, C. Aranas Jr., X. Chu, M. Jahazi, S. Yue, Mater. Sci. Eng. A 729 (2018) 496–507.

    Google Scholar 

  20. M.H. Zhang, L.F. Li, J. Ding, Q.B. Wu, Y.D. Wang, J. Almer, F.M. Guo, Y. Ren, Acta Mater. 141 (2017) 294–303.

    Google Scholar 

  21. P. Hilkhuijsen, H.J.M. Geijselaers, T.C. Bor, E.S. Perdahcolu, A.H. vd Boogaard, R. Akkerman, Mater. Sci. Eng. A 573 (2013) 100-105.

    Google Scholar 

  22. W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, W.H. Tian, Mater. Sci. Eng. A 649 (2016) 417–425.

    Google Scholar 

  23. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26 (2002) 273–312.

    Google Scholar 

  24. Thermodynamic database TCFE9-TCS Steels/Fe-Alloys Database Version 9.0, Thermo-Calc Software AB, Sweden, 2017, https://thermocalc.com/products/databases/steel-and-fe-alloys/. (Accessed 2020–12–13)

  25. N. Chaudhary, A. Abu-Odeh, I. Karaman, R. Arróyave, J. Mater. Sci. 52 (2017) 11048–11076.

    Google Scholar 

  26. T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58 (2010) 3173–3186.

    Google Scholar 

  27. Y.W. Choi, Z.H. Dong, W. Li, S. Schönecker, H. Kim, S.K. Kwon, L. Vitos, Mater. Des. 187 (2020) 108392.

    Google Scholar 

  28. Z.H. Dong, S. Schönecker, D.F. Chen, W. Li, S. Lu, L.Vitos, Int. J. Plasticity 119 (2019) 123–139.

    Google Scholar 

  29. Documentation of Statistics and Machine Learning Toolbox, MathWorks®, 2018, https://se.mathworks.com/help/stats/. (Accessed 2020–12–13)

  30. A. Swami, R. Jain, J. Mach. Learn. Res. 12 (2013) 2825–2830.

    Google Scholar 

  31. S. Allain, O. Bouaziz, J.P. Chateau, Scripta Mater. 62 (2010) 500–503.

    Google Scholar 

  32. H.K. Yang, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Mater. Sci. Eng. A 690 (2017) 146–157.

    Google Scholar 

  33. X. Bian, F. Yuan, X. Wu, Mater. Sci. Eng. A 696 (2017) 220–227.

    Google Scholar 

  34. F. Yang, H. Luo, E. Pu, S. Zhang, H. Dong, Int. J. Plasticity 103 (2018) 188–202.

    Google Scholar 

  35. G.B. Olson, M. Cohen, Metall. Trans. A 6 (1975) 791–795.

    Google Scholar 

  36. Y.A. Betanda, A.L. Helbert, F. Brisset, M.H. Mathon, T. Waeckerlé, T. Baudin, Mater. Sci. Eng. A 614 (2014) 193–198.

    Google Scholar 

  37. J.Y. Choi, W. Jin, Scripta Mater. 36 (1997) 99–104.

    Google Scholar 

  38. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 53 (2005) 5439–5447.

    Google Scholar 

  39. N.I. Vázquez-Fernández, T. Nyyssönen, M. Isakov, M. Hokka, V.T. Kuokkala, Acta Mater. 176 (2019) 134–144.

    Google Scholar 

  40. J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, J.E. Wittig, Mater. Sci. Eng. A 711 (2018) 78–92.

    Google Scholar 

  41. T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Acta Mater. 84 (2015) 330–338.

    Google Scholar 

  42. G.B. Olson, M. Cohen, Metallurgical transactions A 7 (1976) 1905–1914.

    Google Scholar 

  43. X. Li, S. Schönecker, Acta Mater. 135 (2017) 88–95.

    Google Scholar 

  44. C. Ullrich, S. Martin, C. Schimpf, A. Stark, D. Rafaja, Adv. Eng. Mater. 21 (2019) 1801101.

    Google Scholar 

  45. S. Takaki, K. Fukunaga, J. Syarif, T. Tsuchiyama, Mater. Trans. 45 (2004) 2245–2251.

    Google Scholar 

Download references

Acknowledgements

Y.G. Yang, H.T. Jiang, M. Wang, Z.L. Mi, and X.P. Mao gratefully acknowledge the support of the National Key Research and Development Program of China (2017YFB0304404 and 2016YFB0101605), the Program of High-end CNC Machine Tools and Basic Manufacturing Equipment (2019ZX04002030) and China Scholarship Council (CSC). The authors would like to thank N. Chaudhary and co-authors for sharing the SFE database used in their publication. Y.G. Yang and W.Z. Mu would like to thank the Swedish iron and steel research office (Jernkontoret), in particular Hugo Carlssons Stiftelse and Gerhard von Hofstens Stiftelse to support Y.G. Yang’s research activity in KTH. W.Z. Mu would like to acknowledge Associate Professor H.H. Mao (KTH) for the discussion of the thermodynamics, and he also wants to thank Swedish Foundation for International Cooperation in Research and Higher Education (STINT, No. PT2017-7330 & IB2020-8781) for the financial support. X.Q. Li would like to acknowledge the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang-zhong Mu or Zhen-li Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Yg., Mu, Wz., Li, Xq. et al. Effects of strain rate on austenite stability and mechanical properties in a 5Mn steel. J. Iron Steel Res. Int. 29, 316–326 (2022). https://doi.org/10.1007/s42243-021-00569-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00569-3

Keywords

Navigation