Skip to main content

Advertisement

Log in

Kinetic study on co-combustion of pulverized anthracite and bituminite for blast furnace injection

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Combustion behavior of single pulverized coals (PCs) and co-combustion characteristics of anthracite (AT) and bituminite (BT) blends with 20 wt.% volatile were studied by thermogravimetric experiments. The results indicated that reaction characteristics of PCs were closely related to their functional group structure and consequently, the pyrolysis of PCs with highly active functional groups initiated at lower temperatures. It was also noticed that the discrepancy of functional group structures between AT and BT might impair their interaction during combustion. The early exhaust of BT at low temperatures would possibly lead to an independent combustion of volatile and residual carbon and eventually the inefficient combustion of their blend. However, the mixing of AT and BT with similar functional group structures was more likely to achieve blends with superior combustion property. Simultaneously, non-isothermal kinetic analysis manifested that the combustion of blends followed random pore model (RPM), and therefore, the parameters calculated by RPM were more accurate to describe their combustion behavior. The kinetic calculation results showed that the activation energy required for decomposition of blends in early combustion stage was much lower owing to the excellent activity of volatile, while residual carbon with stable aromatic hydrocarbon demanded more energy to initiate its combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.L. Wang, Induction of ironmaking and steelmaking, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  2. L.Z. Jin, J. Duan, S.N. Ou, L.Q. Jia, Journal of Safety Science and Technology 8 (2012) No. 4, 40–43.

    Google Scholar 

  3. X. Xue, Energy Sources, Part A: Recovery, Utilization and Environmental Effects 38 (2016) 69–74.

    Google Scholar 

  4. Y.J. Wang, H.B. Zuo, J. Zhao, G.W. Wang, J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00463-4.

    Article  Google Scholar 

  5. M.Y. Kou, H.B. Zuo, X.J. Ning, G.W. Wang, Z.B. Hong, H.F. Xu, S.L. Wu, Energy 188 (2019) 116030.

    Article  Google Scholar 

  6. S.F. Zhang, C.G. Bai, L.Y. Wen, G.B. Qiu, X.W. Lü, J. Iron Steel Res. Int. 17 (2010) No. 10, 8–12.

    Article  Google Scholar 

  7. I. Naruse, K. Nakayama, A. Higuchi, Khairil, ISIJ Int. 40 (2000) 744–748.

    Article  Google Scholar 

  8. Z.Q. Gu, L.J. Jia, X.Z. Shi, Industrial Furnace 38 (2016) No. 3, 1–4.

    Google Scholar 

  9. J. Li, C.Y. Song, X.J. Li, X.W. Qin, X.K. Du, Anhui Metallurgy (2017) No. 1, 33–36.

    Google Scholar 

  10. B.L. Ma, Y.Z. Zhang, Y.Q. Cai, Y. Xu, Mining and Metallurgy 26 (2017) No. 3, 50–55.

    Google Scholar 

  11. G.W. Wang, J.L. Zhang, G.H. Zhang, X.J. Ning, X.Y. Li, Z.J. Liu, J. Guo, Energy 131 (2017) 27–40.

    Article  Google Scholar 

  12. L.Y. Wen, C.G. Bai, S.F. Zhang, G.B. Qiu, D.F. Chen, ISIJ Int. 47 (2007) 1239–1244.

    Article  Google Scholar 

  13. Y. Wu, S.F. Zhang, S.S. Cai, X. Xiao, C. Yin, J. Xu, S.X. Qiu, W.Z. Yu, M.L. Hu, L.Y. Wen, J. Comput. Chem. 40 (2019) 2749–2760.

    Article  Google Scholar 

  14. C.B. Wang, H. Shao, M. Lei, Y.H. Wu, L.F. Jia, Appl. Therm. Eng. 93(2016) 438–445.

    Article  Google Scholar 

  15. Q.V. Bach, W.H. Chen, C.F. Eng, C.W. Wang, K.C. Liang, J.Y. Kuo, Fuel 251 (2019) 118–125.

    Article  Google Scholar 

  16. Y.F. Wu, Q.H. Pang, Z.J. He, T.F. Song, W.L. Zhan, J.H. Zhang, J. Iron Steel Res. Int. 26 (2019) 818–828.

    Article  Google Scholar 

  17. X.Z. Zhuang, Y.P. Song, H. Zhan, X.L. Yin, C.Z. Wu, Renew. Energy 140 (2019) 380–389.

    Article  Google Scholar 

  18. J.J. He, P.H. Qiu, S.H. Wu, Energy Conservation Technology 25 (2007) No. 4, 321–325.

    Google Scholar 

  19. P. Sharma, O.P. Pandey, P.K. Diwan, Fuel 253 (2019) 1149–1161.

    Article  Google Scholar 

  20. L.C. Yang, Q.H. Pang, Z.J. He, T.X. Xu, S.J. Yang, Y. Wang, Energy Fuels 33 (2019) 12527–12537.

    Article  Google Scholar 

  21. S. Ren, F.Q. Guo, J. Yang, L. Yao, Q. Zhao, M. Kong, Chem. Eng. Res. Des. 126 (2017) 278–285.

    Article  Google Scholar 

  22. G.W. Wang, J.L. Zhang, W.W. Chang, R.P. Li, Y.J. Li, C. Wang, Energy 147 (2018) 25–35.

    Article  Google Scholar 

  23. J. Liu, W.S. Chen, Q.J. Qi, Journal of Liaoning Technical University (Natural Science) 25 (2006) No. 2, 161–163.

    Google Scholar 

  24. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

    Article  Google Scholar 

  25. Q.H. Pang, in: Energy Technology 2014: Carbon Dioxide Management and Other Technologies, TMS, San Diego, USA, 2014, pp. 233–239.

    Google Scholar 

  26. G.W. Wang, J.L. Zhang, X.M. Hou, J.G. Shao, W.W. Geng, Bioresour. Technol. 177 (2015) 66–73.

    Article  Google Scholar 

  27. H.B. Bi, C.X. Wang, Q.Z. Lin, X.D. Jiang, C.L. Jiang, L. Bao, Sci. Total Environ. 751 (2021) 142293.

    Article  Google Scholar 

  28. X.Q. He, X.F. Liu, B.S. Nie, D.Z. Song, Fuel 206 (2017) 555–563.

    Article  Google Scholar 

  29. X.G. Li, Y. Lv, B.G. Ma, S.W. Jian, H.B. Tan, Bioresour. Technol. 102 (2011) 9783–9787.

    Article  Google Scholar 

  30. H. Haykiri-Acma, S. Yaman, Waste Manag. 28 (2008) 2077–2084.

    Article  Google Scholar 

  31. Q.H. Pang, J.L. Zhang, R. Mao, Z. Jiang, T. Liu, J. Iron Steel Res. Int. 21 (2014) 312–320.

    Article  Google Scholar 

  32. J.S. Yu, Coal chemistry, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  33. K.L. Pang, W.G. Xiang, C.S. Zhao, J. Anal. Appl. Pyrol. 80 (2007) 77–84.

    Article  Google Scholar 

  34. J.L. Zhang, J. Guo, G.W. Wang, T. Xu, Y.F. Chai, C.L. Zheng, R.S. Xu, Int. J. Miner. Metall. Mater. 23 (2016) 1001–1010.

    Article  Google Scholar 

  35. Y.Y. Zhang, Z.Z. Zhang, M.M. Zhu, F.Q. Cheng, D.K. Zhang, Bioresour. Technol. 214 (2016) 396–403.

    Article  Google Scholar 

  36. J. Ding, Q.C. Liu, L.J. Jiang, G.Q. Liu, S. Ren, J. Yang, L. Yao, F. Meng, J. Iron Steel Res. Int. 23 (2016) 917–923.

    Article  Google Scholar 

  37. Z.G. Liu, R. Balasubramanian, Bioresour. Technol. 146 (2013) 371–378.

    Article  Google Scholar 

  38. K.M. Lu, W.J. Lee, W.H. Chen, T.C. Lin, Appl. Energy 105 (2013) 57–65.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the team partners from the Research Institute of Mass Energy Optimization and New Technology of Metallurgy for their valuable contribution to this work and preparation of this paper. This work was financially supported by the National Natural Science Foundation of China (51874171, 51604148, 51974154 and 52074150) and Liaoning Provincial Natural Science Foundation Guiding Program of China (2019-ZD-0273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-hai Pang or Zhi-jun He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Lc., Pang, Qh., He, Zj. et al. Kinetic study on co-combustion of pulverized anthracite and bituminite for blast furnace injection. J. Iron Steel Res. Int. 28, 949–964 (2021). https://doi.org/10.1007/s42243-021-00564-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00564-8

Keywords

Navigation