Skip to main content
Log in

Effect of electropulsing on austenite to ferrite transformation in low-carbon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

We explore the application of electropulsing for the control of phase transformation in a low-carbon steel. The effect of electropulsing on the transformation from austenite to ferrite in continuous casting low-carbon steel slab has been studied through experimental and thermodynamic investigations. The results reveal that electropulsing promotes the precipitation of ferrite within austenite grain in the low-carbon steel. When the electropulsing intensity increases, the precipitation of ferrite increases within austenite grains, and ferrite omentum precipitates become thinner along the austenite grain boundary. The results provide a basis for controlling the austenite to ferrite transformation in low-carbon steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.H. Zhu, S.T. Qiu, Adv. Mater. Res. 557–559 (2012) 120–126.

    Article  Google Scholar 

  2. T. Kato, Y. Ito, M. Kawamoto, A. Yamanaka, T. Watanabe, ISIJ Int. 43 (2003) 1742–1750.

    Article  Google Scholar 

  3. Y. Ito, T. Kato, A. Yamanaka, T. Watanabe, Tetsu-to-Hagane 89 (2003) 1023–1030.

    Article  Google Scholar 

  4. F.J. Ma, G.H. Wen, P. Tang, G.D. Xu, F. Mei, J. Univ. Sci. Technol. Beijing 31 (2009) 1116–1121.

    Google Scholar 

  5. B. Malard, J. Pilch, P. Sittner, R. Delville, C. Curfs, Acta Mater. 59 (2011) 1542–1556.

    Article  Google Scholar 

  6. R.S. Qin, E.I. Samuel, A. Bhowmik, J. Mater. Sci. 46 (2011) 2838–2842.

    Article  Google Scholar 

  7. A. Rahnama, R.S. Qin, Scripta Mater. 96 (2015) 17–20.

    Article  Google Scholar 

  8. Q.C. Li, R.X. Li, G.W. Chang, Q.J. Zhai, J. Mater. Process. Technol. 209 (2009) 2015–2020.

    Article  Google Scholar 

  9. Q.C. Li, R.X. Li, X.D. Yue, G.W. Chang, Q.J. Zhai, Mater. Chem. Phys. 112 (2008) 402–406.

    Article  Google Scholar 

  10. E.I. Samuel, A. Bhowmik, R.S. Qin, J. Mater. Res. 25 (2010) 1020–1024.

    Article  Google Scholar 

  11. S. Tanaka, Y. Takemori, M. Tsushida, H. Kitahara, S. Ando, H. Tonda, Mater. Sci. Forum 566 (2007) 351–356.

    Article  Google Scholar 

  12. L.J. He, J.G. Qi, J.Z. Wang, L.Y. Cao, D.Q. Cang, Trans. Mater. Heat Treatment 28 (2007) No. S1, 38–40.

    Google Scholar 

  13. W. Jin, J. Fan, H. Zhang, Y. Liu, H. Dong, B. Xu, J. Alloy. Compd. 646 (2015) 1–9.

    Article  Google Scholar 

  14. H. Guo, X. Zeng, J. Fan, H. Zhang, Q. Zhang, W. Li, H. Dong, B. Xu, J. Mater. Sci. Technol. 35 (2019) 1113–1120.

    Article  Google Scholar 

  15. Y. Liu, J. Fan, H. Zhang, W. Jin, H. Dong, B. Xu, J. Alloy. Compd. 622 (2015) 229–235.

    Article  Google Scholar 

  16. G. Zhao, J. Fan, H. Zhang, Q. Zhang, J. Yang, H. Dong, B. Xu, Mater. Sci. Eng. A 731 (2018) 54–60.

    Article  Google Scholar 

  17. X. Liao, Q. Zhai, C. Song, W. Chen, Y. Gong, Mater. Sci. Eng. A 466 (2007) 56–60.

    Article  Google Scholar 

  18. X.Y. He, Q.Z. Sun, L. Wang, Q. Peng, C.J. Song, H.X. Zheng, Q.J. Zhai, Ironmak. Steelmak. 38 (2011) 374–378.

    Article  Google Scholar 

  19. Y. Zhang, X. Miao, Z. Shen, Q. Han, C. Song, Q. Zhai, Acta Mater. 97 (2015) 357–366.

    Article  Google Scholar 

  20. X. Liao, Q. Zhai, J. Luo, W. Chen, Y. Gong, Acta Mater. 55 (2007) 3103–3109.

    Article  Google Scholar 

  21. C. Song, Y. Guo, Y. Zhang, H. Zheng, M. Yan, Q. Han, Q. Zhai, J. Cryst. Growth 324 (2011) 235–242.

    Article  Google Scholar 

  22. H. Jiang, J. Zhao, C. Wang, X. Liu, Mater. Lett. 132 (2014) 66–69.

    Article  Google Scholar 

  23. Z.H. Zhu, S.T. Qiu, Y. Gan, E.B. Yue, Iron and Steel 44 (2009) No. 10, 31–35.

    Google Scholar 

  24. Z.H. Zhu, S.T. Qiu, P. Liao, W.Y. Xia, Steelmaking 25 (2009) No. 5, 43–47.

    Google Scholar 

  25. Z.H. Zhu, L.J. Xiao, Q. Wang, S.H. Peng, Y. Gan, Iron and Steel 49 (2014) No. 3, 29–35.

    Google Scholar 

  26. J.X. Chen, Book of chart and data for steel-making, Metallurgical Industry Press, Beijing, China, 1984.

    Google Scholar 

  27. X.F. Xu, Theoretical studies on acicular ferrite transformation in micro-alloyed steels, China University of Petroleum, Qingdao, China, 2007.

    Google Scholar 

  28. Z.Y. Liu, G.D. Wang, Q. Zhang, J. Iron Steel Res. 6 (1994) No. 4, 31–37.

    Google Scholar 

  29. R.S. Qin, H.C. Yan. G.H. He, B.L. Zhou, Chin. J. Mater. Res. 9 (1995) 219–222.

  30. Z.Y. Xu, The principle of phase transformations, Science Press, Beijing, China, 1988.

    Google Scholar 

  31. R.S. Qin, B.L. Zhou, Chin. J. Mater. Res. 11 (1997) 69–72.

    Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 51974003 and 51304003) and the National Key Research and Development Program of China (No. 2017YFB0305100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Zh., Zhou, L., He, F. et al. Effect of electropulsing on austenite to ferrite transformation in low-carbon steel. J. Iron Steel Res. Int. 28, 437–444 (2021). https://doi.org/10.1007/s42243-021-00557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00557-7

Keywords

Navigation