Skip to main content

Advertisement

Log in

High-temperature deformation behaviour of duplex stainless steel with hard boronised layer

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to understand the high-temperature deformation behaviour of alloy having hard surface layer, thermo-mechanically treated duplex stainless steel (DSS) is boronised for 0.75–6 h at 1223 K and subsequently deformed under compression mode at the same temperature under strain rate condition of 1 × 10−3, 2 × 10−4 and 6 × 10−5 s−1 until strain of 0.4. The substrate microstructure is almost isotropic with grain size after boronising with layer thickness between 1.61 and 2.74 μm. X-ray diffraction results confirm the formation of boride on DSS surface. The surface hardness of DSS increases from 387 to 1000–2400 HV after boronising. Uniform boronised layer with thickness of 20–40 μm is formed at DSS surface. Compression results show that the flow stress of the deformation increases with the strain rate and boronising time. For the boronised samples, the flow stress range is between 5 and 89 MPa. To determine the actual effect of the boronised layer on the flow stress, the results are also compared with those from un-boronised samples having similar microstructure. The results suggest that at a constant grain size, even with the hardest layer, the effect of hard surface layer on the flow stress almost could be negligible when the deformation rate is slow, but at faster deformation rate, even in the layer with the least hardness, the flow stress shows a significant increase. It is also observed that the hard boride surface disintegration could be avoided at a sufficiently low deformation flow stress that could be attributed to superplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Kustas, B. Mishra, J. Zhou, Surf. Coat. Technol. 153 (2002) 25–30.

    Article  Google Scholar 

  2. X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, A. Matthews, Surf. Coat. Technol. 149 (2002) 245–251.

    Article  Google Scholar 

  3. D.A. Stewart, P.H. Shipway, D.G. McCartney, Wear 225–229 (1999) 789–798.

    Article  Google Scholar 

  4. Y. Wang, S. Jiang, M. Wang, S. Wang, T.D. Xiao, P.R. Strutt, Wear 237 (2000) 176–185.

    Article  Google Scholar 

  5. L. Benea, P.L. Bonora, A. Borello, S. Martelli, Wear 249 (2001) 995–1003.

    Article  Google Scholar 

  6. S. Wilson, A.T. Alpas, Surf. Coat. Technol. 108–109 (1998) 369–376.

    Article  Google Scholar 

  7. J.R. Davis, Surface hardening of steels: understanding the basics, ASM International, Material Park, OH, USA, 2002.

    Google Scholar 

  8. H. Holleck, V. Schier, Surf. Coat. Technol. 76–77 (1995) 328–336.

    Article  Google Scholar 

  9. Y. Sahin, G. Sur, Surf. Coat. Technol. 179 (2004) 349–355.

    Article  Google Scholar 

  10. B.S. Suh, W.J. Lee, Thin Solid Films 295 (1997) 185–192.

    Article  Google Scholar 

  11. G. Pantazopoulos, T. Papazoglou, P. Psyllaki, G. Sfantos, S. Antoniou, K. Papadimitriou, J. Sideris, Surf. Coat. Technol. 187 (2004) 77–85.

    Article  Google Scholar 

  12. K.H. Habig, Mater. Des. 2 (1980) 83–92.

    Article  Google Scholar 

  13. S.H. Choo, S. Lee, S.J. Kwon, Metall. Mater. Trans. A 30 (1999) 1211–1221.

    Article  Google Scholar 

  14. J. Lee, J. Jang, B. Joo, Y. Son, Y. Moon, Trans. Nonferrous Met. Soc. China 19 (2009) 917–920.

    Article  Google Scholar 

  15. Y. Chang, D. Wang, Surf. Coat. Technol. 200 (2005) 2187–2191.

    Article  Google Scholar 

  16. J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, J. Nucl. Mater. 282 (2000) 131–136.

    Article  Google Scholar 

  17. W. Möller, S. Parascandola, T. Telbizova, R. Günzel, E. Richter, Surf. Coat. Technol. 136 (2001) 73–79.

    Article  Google Scholar 

  18. D. Neves, A.E. Diniz, M.S.F. Lima, Appl. Surf. Sci. 282 (2013) 680–688.

    Article  Google Scholar 

  19. B. Lux, R. Haubner, in: A.H. Lettington, J.W. Steeds (Eds.), Diamond as a Wear-Resistant Coating, Thin Film Diamond, Springer, Dordrecht, 1993, pp. 127–141.

  20. J. Rus, C.L. De Leal, D.N. Tsipas, J. Mater. Sci. Lett. 4 (1985) 558–560.

    Article  Google Scholar 

  21. I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, M.Y. Jiménez-Reyes, Surf. Coat. Technol. 205 (2010) 403–412.

    Article  Google Scholar 

  22. B.J. Smith, R. Overholster, S. Aust, Boronised medical implants and process of manufacture, USA, US20060074491A1, 2004.

  23. J. Gossett, Boronized valve seal, German, EP1834121A1, 2006.

  24. S.R. Scales, Method of finishing a steel article having a boronized and carburized case, USA, US4012238, 1977.

  25. E.M. Fainshmidt, V.F. Pegashkin, Met. Sci. Heat Treat. 42 (2000) 263–266.

    Article  Google Scholar 

  26. J. Jiang, Y. Wang, Q. Zhong, Q. Zhou, L. Zhang, Surf. Coat. Technol. 206 (2011) 473–478.

    Article  Google Scholar 

  27. E.E. Vera Cárdenas, R. Lewis, A.I. Martínez Pérez, J.L. Bernal Ponce, F.J. Pérez Pinal, M.O. Domínguez, E.D. Rivera Arreola, Adv. Mech. Eng. 8 (2016) 168781401663025.

    Google Scholar 

  28. R. Narayan, Diamond-based materials for biomedical applications, Woodhead Publising Limited, Elsevier, Cambridge, UK, 2013.

    Book  Google Scholar 

  29. I. Campos-Silva, M. Ortiz-Domínguez, M. Keddam, N. López-Perrusquia, A. Carmona-Vargas, M. Elías-Espinosa, Appl. Surf. Sci. 255 (2009) 9290–9295.

    Article  Google Scholar 

  30. E. Evangelista, H.J. McQueen, M. Niewczas, M. Cabibbo, Can. Metall. Quart. 43 (2004) 339–353.

    Article  Google Scholar 

  31. Leif, Weld. World 56 (2012) 65–76.

    Article  Google Scholar 

  32. L. Weber, P.J. Uggowitzer, Mater. Sci. Eng. A 242 (1998) 222–229.

    Article  Google Scholar 

  33. E. Wallis, Mater. Corros. 41 (1990) 155–162.

    Article  Google Scholar 

  34. P. Cunat, Alloying elements in stainless steel and other chromium-containing alloys, ICDA, Paris, France, 2004.

    Google Scholar 

  35. D.N. Zou, Y. Han, W. Zhang, G.W. Fan, J. Iron Steel Res. Int. 17 (2010) No. 11, 67–72.

    Article  Google Scholar 

  36. S. Spigarelli, M. El Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, V. Gartnerova, Mater. Sci. Eng. A 462 (2007) 197–201.

    Article  Google Scholar 

  37. I. Jauhari, H.A.M. Yusof, R. Saidan, Mater. Sci. Eng. A 528 (2011) 8106–8110.

    Article  Google Scholar 

  38. I. Jauhari, S. Harun, S.A. Jamlus, M.F.M. Sabri, Metall. Mater. Trans. A 48 (2017) 975–981.

    Article  Google Scholar 

  39. R. Hasan, I. Jauhari, H. Ogiyama, R.D. Ramdan, Key Eng. Mater. 326–328 (2006) 1745–1748.

    Article  Google Scholar 

  40. N.H. Abd Aziz, I. Jauhari, H.A.M. Yusof, N.W. Ahamad, Defect Diffus. Forum 283–286 (2009) 458–463.

    Google Scholar 

  41. H. Li, G. Fan, Y. He, J. Bai, C. Zhang, P. Han, Steel Res. Int. 86 (2015) 84–88.

    Article  Google Scholar 

  42. C. Kapfenberger, B. Albert, R. Pöttgen, H. Huppertz, Zeitschrift für Kristallographie—Crystalline Materials 221 (2006) 477–481.

    Article  Google Scholar 

  43. L. Han, S. Wang, J. Zhu, S. Han, W. Li, B. Chen, X. Wang, X. Yu, B. Liu, R. Zhang, Y.W. Long, J.G. Cheng, J. Zhang, Y. Zhao, C. Jin, Appl. Phys. Lett. 106 (2015) 221902.

    Article  Google Scholar 

  44. H. Okamoto, J. Phase Equilib. Diff. 25 (2004) 297–298.

    Article  Google Scholar 

  45. V. Dybkov, J. Miner. Met. Mater. Eng. 2 (2016) 30–46.

    Article  Google Scholar 

  46. M.M.E Ali, J. Chen, I. Harran, B. Sun, X. Cai, H. Wang, L. Tao, Y. Chen, J. Phys. Chem. Solids 127 (2018) 238–244.

    Article  Google Scholar 

  47. A. Gueddouh, B. Bentria, I.K. Lefkaier, J. Magn. Magn. Mater. 406 (2016) 192–199.

    Article  Google Scholar 

  48. S.V. Astafurov, G.G. Maier, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko, E.G. Astafurova, Mater. Sci. Eng. A 756 (2019) 365–372.

    Article  Google Scholar 

  49. R. Hasan, I. Jauhari, H. Ogiyama, R.D. Ramdan, Key Eng. Mater. 326–328 (2006) 1233–1236.

    Article  Google Scholar 

  50. I. Jauhari, H.A.M. Yusof, S. Rozali, H. Ogiyama, J. Solid Mech. Mater. Eng. 1 (2007) 539–546.

    Article  Google Scholar 

  51. N.M. Sultan, I. Jauhari, M.F.M. Sabri, Mater. Res. Express 6 (2019) 1165f7.

    Article  Google Scholar 

  52. K.A. Padmanabhan, R. Vasin, F. Enikeev, Superplastic flow: phenomenology and mechanics, Springer-Verlag Berlin Heidelberg, New York, USA, 2012.

    Google Scholar 

  53. A. Marchattiwar, A. Sarkar, J.K. Chakravartty, B.P. Kashyap, J. Mater. Eng. Perform. 22 (2013) 2168–2175.

    Article  Google Scholar 

  54. A.V. Mikhaylovskaya, A.O. Mosleh, A.D. Kotov, J.S. Kwame, T. Pourcelot, I.S. Golovin, V.K. Portnoy, Mater. Sci. Eng. A 708 (2017) 469–477.

    Article  Google Scholar 

  55. F. Tehovnik, B. Zuzek, J. Burja, Mater. Technol. 50 (2016) 989–993.

    Google Scholar 

  56. Y. Maehara, Y. Ohmori, Metall. Mater. Trans. A 18 (1987) 663–672.

    Article  Google Scholar 

  57. M. Ma, H. Ding, Z.Y. Tang, J.W. Zhao, Z.H. Jiang, G.W. Fan, J. Iron Steel Res. Int. 23 (2016) 244–252.

    Article  Google Scholar 

  58. R.R. Balokhonov, V.A. Romanova, Phys. Mesomech. 13 (2010) 28–37.

    Article  Google Scholar 

  59. F. Ren, F. Chen, J. Chen, X. Tang, J. Manuf. Process 31 (2018) 640–649.

    Article  Google Scholar 

  60. F. Peng, X. Dong, K. Liu, H. Xie, J. Iron Steel Res. Int. 22 (2015) 931–936.

    Article  Google Scholar 

  61. B.K. Choudhary, Metall. Mater. Trans. A 45 (2014) 302–316.

    Article  Google Scholar 

  62. A.H. Chokshi, Mater. Chem. Phys. 210 (2017) 152–161.

    Article  Google Scholar 

  63. X. Li, X. Lü, H. Wu, B. Ji, J. Chen, J. Li, Procedia Eng. 207 (2017) 1880–1885.

    Article  Google Scholar 

  64. J. Wang, Y. Liu, B. Liu, Y. Wang, Y. Cao, T. Li, R. Zhou, Mater. Sci. Eng. A 689 (2017) 233–242.

    Article  Google Scholar 

  65. C. Cui, Y. Gao, S. Wei, G. Zhang, Y. Zhou, X. Zhu, J. Alloy. Compd. 716 (2017) 321–329.

    Article  Google Scholar 

  66. N. Hirota, F. Yin, T. Azuma, T. Inoue, Sci. Technol. Adv. Mater. 11 (2010) 025004.

    Article  Google Scholar 

  67. H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Yang, J. Iron Steel Res. Int. 16 (2009) No. 1, 58–61.

  68. V.I. Dybkov, W. Lengauer, K. Barmak, J. Alloy. Compd. 398 (2005) 113–122.

    Article  Google Scholar 

  69. J. Zuno-Silva, M. Keddam, M. Ortiz-Domínguez, M. Carlos Elias-Espinosac, F. Cervantes-Sodi, J. Oseguera-Peña, L.D.F. De-Dios, O.A. Gomez-Vargas, Mater. Res. 21 (2018) e20180173.

    Google Scholar 

  70. C.H. Xu, J.K. Xi, W. Gao, J. Mater. Process. Technol. 65 (1997) 94–98.

    Article  Google Scholar 

  71. N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgson, Acta Mater. 126 (2017) 44–57.

    Article  Google Scholar 

Download references

Acknowledgements

This research work was financed by Postgraduate Research Grant (PPP) (Project No. PG019-2014B) from University of Malaya, Malaysia and Akaun Amanah Industri Bekalan Elektrik (Project No. GA012-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jauhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, N.M., Jauhari, I., Saidan, R. et al. High-temperature deformation behaviour of duplex stainless steel with hard boronised layer. J. Iron Steel Res. Int. 28, 244–253 (2021). https://doi.org/10.1007/s42243-020-00544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00544-4

Keywords

Navigation